First principles calculations for electronic, optical and magnetic properties of full heusler compounds

Keywords: Half-metallic ferromagnetic, band gap, density of state, Spintronics

Abstract

For the investigation of structural, electronic, optical and magnetic properties of Co2CrZ (Z= In, Sb, Sn) compounds, we have used two different methods. One is based on full potential linearized augmented plane wave (FP-LAPW) method as implemented in WIEN2k and second is pseudo potential method as implemented in Atomistic Tool Kit-Virtual NanoLab (ATK-VNL). These compounds show zero band gap in their majority-spin and minority-spin representing metallic behavior except the compound Co2CrSb, which is showing the band gap 0.54 eV in their minority-spin near the Fermi level and viewing 100% spin polarization; which is implemented in WIEN2k code. Further, the compound Co2CrSb has been found to be perfectly half-metallic ferromagnetic (HMF). However, above mentioned compounds shows zero band gap in ATK-VNL code. Calculations performed using WIEN2k code shows the magnetic moment of these compounds Co2CrZ (Z= In, Sb, Sn) 3.11, 5.00 and 4.00µB respectively. However, the respective magnetic moment of these compounds is found to be 3.14, 5.05 and 4.12µB in ATK-VNL code. Calculated magnetic moments have good agreement with the Slater-Pauling behavior. Optical properties play an important role to understand the nature of material for optical phenomenon and optoelectronics devices. Value of absorption coefficient and optical conductivity of Co2CrSb is greatest than other two compounds. From the absorption and reflection spectra relation, observations indicate that absorption and reflectivity are inversely proportional to each other.

Downloads

Download data is not yet available.

References

REFERENCES

Fr. Heusler, Ueber magnetische Manganlegierungen. Verh. Dtsch. Phys. Ges. 5, 219 (1903).

Fr. Heusler, W. Starck, and E. Haupt, Magnetisch-Chemische Studien. Verh. Dtsch. Phys. Ges. 5, 220 (1903)

Fr. Heusler, and E. Take, The nature of the Heusler alloys, Trans. Faraday Soc. 8, 169-184 (1912).

L. Néel, Ann. de Phys. 5, 232–279 (1936), https://doi.org/10.1051/anphys/193611050232.

L. Néel, Rev. Mod. Phys. 25 58–63 (1953), https://doi.org/10.1103/RevModPhys.25.58.

I. Galanakis, in: Heusler Alloys. Properties, Growth, Applications, edited by C. Felser, and A. Hirohata (Springer International Publishing, Switzerland, 2016), pp. 3-36, https://doi.org/10.1007/978-3-319-21449-8.

C.J. Palmstrom, Prog. Crys. Growth. Char. Mater. 62, 371-397 (2016), https://doi.org/10.1016/j.pcrysgrow.2016.04.020.

A.O. Oliynyk, E. Antono, T.D. Sparks, L. Ghadbeigi, M.W. Gaultois, B. Meredig, and A. Mar, Chem. Mater. 28, 7324-7331 2016), https://doi.org/10.1021/acs.chemmater.6b02724.

Arash Anjami, Arash Boochani, Seyed Moahammad Elahi, Hossein Akbari, Results Phys. 7, 3522–3529 (2017), https://doi.org/10.1016/j.rinp.2017.09.008.

R.A. de Groot, F.M. Muller, P.G. van Engen, and K.H.J. Buschow, New class of materials: half-metallic ferrowmagnets, Phys. Rev. Lett. 50, 2024-2027 (1983), https://doi.org/10.1103/PhysRevLett.50.2024.

J. Kübler, A.R. William, C.B. Sommers, Phys. Rev. B, 28, 1745-1755 (1983), https://doi.org/10.1103/PhysRevB.28.1745.

M.I. Katsnelson, V.Yu. Irkhin, L. Chioncel, A.I. Lichtenstein, and R.A. de Groot, Rev. Mod. Phys. 80, 315-378 (2008), https://doi.org/10.1103/RevModPhys.80.315.

Igor Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323-410 (2004), https://doi.org/10.1103/RevModPhys.76.323.

H. Ohno, Science, 281, 951-956 (1998), https://doi.org/10.1126/science.281.5379.951.

J.D. Boeck, W.V. Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae, H. Boeve, K. Dessein, and G. Borghs, Semicond. Sci. Technol. 17, 342 (2002), https://doi.org/10.1088/0268-1242/17/4/307.

S. Ishida, S. Akazawa, Y. Kubo, and J. Ishida, J. Phys. F: Met. Phys. 12, 1111 (1982), https://doi.org/10.1088/0305-4608/12/6/012.

I. Galanakis, K. Özdoğan, E. Şaşıoğlu, and B. Aktaş, Phys. Rev. B, 75, 092407 (2007), https://doi.org/10.1103/PhysRevB.75.092407.

R.Y. Umetsu, K. Kobayashi, R. Kainuma, A. Fujita, K. Fukamichi, K. Ishida, and A. Sakuma, Appl. Phys. Lett. 85, 2011-2013 (2004), https://doi.org/10.1063/1.1790029.

Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B, 69, 144413 (2004), https://doi.org/10.1103/PhysRevB.69.144413.

K. Seema, N.M. Umran, and R. Kumar, J. Supercond. Nov. Magn. 29, 401-408 (2016), https://doi.org/10.1007/s10948-015-3271-7.

E. Wimmer, H. Krakauer, M. Weinert, and A.J. Freeman, Phys. Rev. B, 24, 864-875 (1981), https://doi.org/10.1103/PhysRevB.24.864.

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz in: WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, edited by K Schwarz (Technical Universitatwien, Austria, 2001), pp. 287.

E. Sjöstedt, L. Nordström, and D.J. Singh, Solid State Commun. 114, 15-20 (2000), https://doi.org/10.1016/S0038-1098(99)00577-3.

J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.

Atomistix ToolKit-Virtual Nanolab (ATK-VNL), QuantumWise Simulator, Version. 2014.3. Available: http://quantumwise.com/

Y.J. Lee, M. Brandbyge, J. Puska, J. Taylor, K. Stokbro, and M. Nieminen, Phys. Rev. B, 69, 125409 (2004), https://doi.org/10.1103/PhysRevB.69.125409.

K. Schwarz, J. Solid State Chem. 176, 319–328 (2003), https://doi.org/10.1016/S0022-4596(03)00213-5.

P. Pulay, J. Comput. Chem. 3, 556–560 (1982), https://doi.org/10.1002/jcc.540030413.

H.J. Monkhorst, and J.D. Pack, Phys. Rev. B, 13, 5188-5192 (1976), https://doi.org/10.1103/PhysRevB.13.5188.

T. Hahn, A. Looijenga-Vos, M.I. Aroyo, H.D. Flack, K. Momma, and P. Konstantinov, edited by M. Aroyo, in: International Tables for Crystal-lography Volume A: Space-group Symmetry, (Springer Netherlands, Dordrecht, 2016), pp. 193-687, http://dx.doi.org/10.1107/97809553602060000114.

M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G.L.W. Hart, and S. Curtarolo, Comput. Mater. Sci. 136, S1-S828 (2017), https://doi.org/10.1016/j.commatsci.2017.01.017.

F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A, 30, 244-247 (1944), https://dx.doi.org/10.1073%2Fpnas.30.9.244.

I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B, 66, 134428 (2002), https://doi.org/10.1103/PhysRevB.66.134428.

C.M. Fang, G.A. de Wijs, and R.A. de Groot, J. Appl. Phys. 91, 8340 (2002), https://doi.org/10.1063/1.1452238.

R. Jain, N. lakshmi, V. K. Jain, V. Jain, A.R. Chandra, and K. Venugopalan, J. Magn. Magn. Mater. 448, 278-286 (2018), https://doi.org/10.1016/j.jmmm.2017.06.074.

S. Sharma, A.S. Verma, and V.K. Jindal, Mat. Res. Bull. 53, 218-233 (2014), https://doi.org/10.1016/j.materresbull.2014.02.021.

Published
2020-08-13
Cited
How to Cite
Sukhender, S., Pravesh, P., Mohan, L., & Verma, A. S. (2020). First principles calculations for electronic, optical and magnetic properties of full heusler compounds. East European Journal of Physics, (3), 111-121. https://doi.org/10.26565/2312-4334-2020-3-14

Most read articles by the same author(s)