First principles calculations for electronic, optical and magnetic properties of full heusler compounds
Abstract
For the investigation of structural, electronic, optical and magnetic properties of Co2CrZ (Z= In, Sb, Sn) compounds, we have used two different methods. One is based on full potential linearized augmented plane wave (FP-LAPW) method as implemented in WIEN2k and second is pseudo potential method as implemented in Atomistic Tool Kit-Virtual NanoLab (ATK-VNL). These compounds show zero band gap in their majority-spin and minority-spin representing metallic behavior except the compound Co2CrSb, which is showing the band gap 0.54 eV in their minority-spin near the Fermi level and viewing 100% spin polarization; which is implemented in WIEN2k code. Further, the compound Co2CrSb has been found to be perfectly half-metallic ferromagnetic (HMF). However, above mentioned compounds shows zero band gap in ATK-VNL code. Calculations performed using WIEN2k code shows the magnetic moment of these compounds Co2CrZ (Z= In, Sb, Sn) 3.11, 5.00 and 4.00µB respectively. However, the respective magnetic moment of these compounds is found to be 3.14, 5.05 and 4.12µB in ATK-VNL code. Calculated magnetic moments have good agreement with the Slater-Pauling behavior. Optical properties play an important role to understand the nature of material for optical phenomenon and optoelectronics devices. Value of absorption coefficient and optical conductivity of Co2CrSb is greatest than other two compounds. From the absorption and reflection spectra relation, observations indicate that absorption and reflectivity are inversely proportional to each other.
Downloads
References
REFERENCES
Fr. Heusler, Ueber magnetische Manganlegierungen. Verh. Dtsch. Phys. Ges. 5, 219 (1903).
Fr. Heusler, W. Starck, and E. Haupt, Magnetisch-Chemische Studien. Verh. Dtsch. Phys. Ges. 5, 220 (1903)
Fr. Heusler, and E. Take, The nature of the Heusler alloys, Trans. Faraday Soc. 8, 169-184 (1912).
L. Néel, Ann. de Phys. 5, 232–279 (1936), https://doi.org/10.1051/anphys/193611050232.
L. Néel, Rev. Mod. Phys. 25 58–63 (1953), https://doi.org/10.1103/RevModPhys.25.58.
I. Galanakis, in: Heusler Alloys. Properties, Growth, Applications, edited by C. Felser, and A. Hirohata (Springer International Publishing, Switzerland, 2016), pp. 3-36, https://doi.org/10.1007/978-3-319-21449-8.
C.J. Palmstrom, Prog. Crys. Growth. Char. Mater. 62, 371-397 (2016), https://doi.org/10.1016/j.pcrysgrow.2016.04.020.
A.O. Oliynyk, E. Antono, T.D. Sparks, L. Ghadbeigi, M.W. Gaultois, B. Meredig, and A. Mar, Chem. Mater. 28, 7324-7331 2016), https://doi.org/10.1021/acs.chemmater.6b02724.
Arash Anjami, Arash Boochani, Seyed Moahammad Elahi, Hossein Akbari, Results Phys. 7, 3522–3529 (2017), https://doi.org/10.1016/j.rinp.2017.09.008.
R.A. de Groot, F.M. Muller, P.G. van Engen, and K.H.J. Buschow, New class of materials: half-metallic ferrowmagnets, Phys. Rev. Lett. 50, 2024-2027 (1983), https://doi.org/10.1103/PhysRevLett.50.2024.
J. Kübler, A.R. William, C.B. Sommers, Phys. Rev. B, 28, 1745-1755 (1983), https://doi.org/10.1103/PhysRevB.28.1745.
M.I. Katsnelson, V.Yu. Irkhin, L. Chioncel, A.I. Lichtenstein, and R.A. de Groot, Rev. Mod. Phys. 80, 315-378 (2008), https://doi.org/10.1103/RevModPhys.80.315.
Igor Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323-410 (2004), https://doi.org/10.1103/RevModPhys.76.323.
H. Ohno, Science, 281, 951-956 (1998), https://doi.org/10.1126/science.281.5379.951.
J.D. Boeck, W.V. Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae, H. Boeve, K. Dessein, and G. Borghs, Semicond. Sci. Technol. 17, 342 (2002), https://doi.org/10.1088/0268-1242/17/4/307.
S. Ishida, S. Akazawa, Y. Kubo, and J. Ishida, J. Phys. F: Met. Phys. 12, 1111 (1982), https://doi.org/10.1088/0305-4608/12/6/012.
I. Galanakis, K. Özdoğan, E. Şaşıoğlu, and B. Aktaş, Phys. Rev. B, 75, 092407 (2007), https://doi.org/10.1103/PhysRevB.75.092407.
R.Y. Umetsu, K. Kobayashi, R. Kainuma, A. Fujita, K. Fukamichi, K. Ishida, and A. Sakuma, Appl. Phys. Lett. 85, 2011-2013 (2004), https://doi.org/10.1063/1.1790029.
Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B, 69, 144413 (2004), https://doi.org/10.1103/PhysRevB.69.144413.
K. Seema, N.M. Umran, and R. Kumar, J. Supercond. Nov. Magn. 29, 401-408 (2016), https://doi.org/10.1007/s10948-015-3271-7.
E. Wimmer, H. Krakauer, M. Weinert, and A.J. Freeman, Phys. Rev. B, 24, 864-875 (1981), https://doi.org/10.1103/PhysRevB.24.864.
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz in: WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, edited by K Schwarz (Technical Universitatwien, Austria, 2001), pp. 287.
E. Sjöstedt, L. Nordström, and D.J. Singh, Solid State Commun. 114, 15-20 (2000), https://doi.org/10.1016/S0038-1098(99)00577-3.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.
Atomistix ToolKit-Virtual Nanolab (ATK-VNL), QuantumWise Simulator, Version. 2014.3. Available: http://quantumwise.com/
Y.J. Lee, M. Brandbyge, J. Puska, J. Taylor, K. Stokbro, and M. Nieminen, Phys. Rev. B, 69, 125409 (2004), https://doi.org/10.1103/PhysRevB.69.125409.
K. Schwarz, J. Solid State Chem. 176, 319–328 (2003), https://doi.org/10.1016/S0022-4596(03)00213-5.
P. Pulay, J. Comput. Chem. 3, 556–560 (1982), https://doi.org/10.1002/jcc.540030413.
H.J. Monkhorst, and J.D. Pack, Phys. Rev. B, 13, 5188-5192 (1976), https://doi.org/10.1103/PhysRevB.13.5188.
T. Hahn, A. Looijenga-Vos, M.I. Aroyo, H.D. Flack, K. Momma, and P. Konstantinov, edited by M. Aroyo, in: International Tables for Crystal-lography Volume A: Space-group Symmetry, (Springer Netherlands, Dordrecht, 2016), pp. 193-687, http://dx.doi.org/10.1107/97809553602060000114.
M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G.L.W. Hart, and S. Curtarolo, Comput. Mater. Sci. 136, S1-S828 (2017), https://doi.org/10.1016/j.commatsci.2017.01.017.
F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A, 30, 244-247 (1944), https://dx.doi.org/10.1073%2Fpnas.30.9.244.
I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B, 66, 134428 (2002), https://doi.org/10.1103/PhysRevB.66.134428.
C.M. Fang, G.A. de Wijs, and R.A. de Groot, J. Appl. Phys. 91, 8340 (2002), https://doi.org/10.1063/1.1452238.
R. Jain, N. lakshmi, V. K. Jain, V. Jain, A.R. Chandra, and K. Venugopalan, J. Magn. Magn. Mater. 448, 278-286 (2018), https://doi.org/10.1016/j.jmmm.2017.06.074.
S. Sharma, A.S. Verma, and V.K. Jindal, Mat. Res. Bull. 53, 218-233 (2014), https://doi.org/10.1016/j.materresbull.2014.02.021.
Copyright (c) 2020 Sukhender, Pravesh Pravesh, Lalit Mohan, Ajay Singh Verma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).