Time-Controlled Synthesis of CdTe Quantum Dots for Tunable Photoluminescence

Keywords: CdTe quantum dots, Fluorescence, Quantum confinement, Reaction time, Surface passivation, Photoluminescence

Abstract

We report the synthesis and time‐dependent photoluminescence evolution of colloidal CdTe quantum dots (QDs), demonstrating that reaction duration can be used as an effective lever to tune their emission characteristics. By varying the synthesis time from 3 to 16 minutes, we observed a pronounced red‐shift in the fluorescence maxima–spanning from near‐UV (~348 nm) to visible‐red (~646 nm) when excited at ~200 nm–and a corresponding increase in emission intensity. These trends, consistent with classical quantum confinement theory, suggest larger nanocrystal diameters and improved surface passivation emerge over the course of the reaction. Such behavior is crucial for optoelectronic and bioimaging applications, which often rely on precise emission wavelength control and high photoluminescence quantum yields. While the substantial rise in fluorescence intensity points to enhanced quantum yields, definitive quantification would require comparisons against well‐characterized standards. Nonetheless, these findings highlight the relative ease with which CdTe QD emission properties can be modulated by adjusting key synthesis parameters. Future work targeting extended reaction protocols and advanced capping strategies may further refine emission profiles and long‐term stability for applications in nano‐optoelectronics, sensing, and biomedical imaging.

Downloads

Download data is not yet available.

References

P. Pooja, M. Rana, and P. Chowdhury, “Influence of size and shape on optical and electronic properties of CdTe quantum dots in aqueous environment,” In IEEE International Conference on Photonics, 2136, 040006 (2019). https://doi.org/10.1063/1.5120920

S. Sadjadi, F. Asgari, N. Farhadyar, and N. Molahasani, “Study of quantum size effects and optical characteristics in colloidal cd1-xsnxte quantum dotes,” Int. J. Nano Dimens. 5(1), 57-61 (2014). https://www.sid.ir/EN/VEWSSID/J_pdf/1010420140108.pdf

E. Groeneveld, C. Delerue, G. Allan, Y.-M. Niquet, and C. de M. Donegá, “Size dependence of the exciton transitions in colloidal CdTe quantum dots,” Journal of Physical Chemistry C, 116(43), 23160–23167 (2012). https://doi.org/10.1021/JP3080942

S. Kiprotich, M.O. Onani, and F.B. Dejene, “High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times,” Physica B: Condensed Matter, 535, 202-210 (2018). https://doi.org/10.1016/J.PHYSB.2017.07.037

S. Kiprotich, F.B. Dejene, J. Ungula, and M.O. Onani, “The influence of reaction times on structural, optical and luminescence properties of cadmium telluride nanoparticles prepared by wet-chemical process,” Physica B: Condensed Matter, 480, 125-130 (2016). https://doi.org/10.1016/J.PHYSB.2015.08.062

J.S. Kamal, A. Omari, K.V. Hoecke, Q. Zhao, A. Vantomme, F. Vanhaecke, R. Capek, and Z. Hens, “Size-dependent optical properties of zinc blende cadmium telluride quantum dots,” J. Phys. Chem. C, 116(8), 5049–5054 (2012). https://doi.org/10.1021/JP212281M

A.A. Issa, and T.A. Hamoudi, “Theoretical studies of the optical properties of ZnS, ZnO and CdS nanopartical using the Brus equation,” Tikrit Journal of Pure Science, 27(3), 15–18 (2022). https://doi.org/10.25130/tjps.v27i3.55

A. Kafel, and S.N.T. Al-Rashid, “Study using the Brus equation to examine how quantum confinement energy affects the optical characteristics of cadmium sulfide and zinc selenide,” International Journal of Nanoscience, 22(04), 2350034 (2023). https://doi.org/10.1142/S0219581X23500345

S.T. Harry, and M.A. Adekanmbi, “Ground state confinement energy of quantum dots and the Brus equation: A mathematical approach,” Current Perspective to Physical Science Research, 8, 146-155 (2024). https://doi.org/10.9734/bpi/cppsr/v8/7943e

J.-L. Liu, “Mathematical modeling of semiconductor quantum dots based on the nonparabolic effective-mass approximation,” Nanoscale Systems: Mathematical Modeling, Theory and Applications, 1, 58-79 (2012).

H. Yeo, J. Lee, M.E. Khan, H. Kim, D.Y. Jeon, and Y.-H. Kim, “First-principles-derived effective mass approximation for the improved description of quantum nanostructures,” J. Phys. Mater. 3, 034012 (2020). https://doi.org/10.1088/2515-7639/AB9B61

N.B. Abdallah, C. Jourdana, and P. Pietra, “An effective mass model for the simulation of ultra-scaled confined devices,” Mathematical Models and Methods in Applied Sciences, 22(12), 1250039 (2012). https://doi.org/10.1142/S021820251250039X

A. Gusev, O. Chuluunbaatar, S.I. Vinitsky, K.G. Dvoyan, E.M. Kazaryan, H.A. Sarkisyan, V.L. Derbov, et al., “Adiabatic description of nonspherical quantum dot models,” Physics of Atomic Nuclei, 75, 1210–1226 (2012). https://doi.org/10.1134/S1063778812100079

D. Qin, X. Guo, B. Chen, and Z. Rong, “Surface passivated CdTe nanocrystalline film and surface passivation treatment method and application thereof,” (2019). U.S. Pat. No. 6,906,339.

D. Mandal, D. Mandal, N.V. Dambhare, N.V. Dambhare, A.K. Rath, and A.K. Rath, “Reduction of hydroxyl traps and improved coupling for efficient and stable quantum dot solar cells,” ACS Applied Materials & Interfaces, 13(39), 46549–46557 (2021). https://doi.org/10.1021/ACSAMI.1C11214

Q. Zhang, H. Huang, J. Wang, M. Wang, S. Qu, Z. Lan, T. Jiang, et al., “A universal ternary solvent system of surface passivator enables perovskite solar cells with efficiency exceeding 26%,” Advanced Materials, 36(50), 2410390 (2024). https://doi.org/10.1002/adma.202410390

L.T.A. da Rosa, I.F.S. Aversa, E. Raphael, A.S. Polo, A. Duarte, M.A. Schiavon, and L.S. Virtuoso, “Improving photoluminescence quantum yield of CdTe quantum dots using a binary solvent (water + glycerin) in the one-pot approach synthesis,” Journal of the Brazilian Chemical Society, 32(4), 860-868 (2021). https://doi.org/10.21577/0103-5053.20200237

T. Dudka, S.V. Kershaw, S. Lin, J. Schneider, and A.L. Rogach, “Enhancement of the fluorescence quantum yield of thiol-stabilized CdTe quantum dots through surface passivation with sodium chloride and bicarbonate,” Zeitschrift für Physikalische Chemie, 232(9-11), 1399-1412 (2018). https://doi.org/10.1515/ZPCH-2018-1130

J. Ma, J.-Y. Chen, Y. Zhang, P.-N. Wang, J. Guo, W. Yang, and C. Wang, “Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: Process and mechanism,” Journal of Physical Chemistry B, 111(41), 12012 12016 (2007). https://doi.org/10.1021/JP073351+

A.S. Tsipotan, M.A. Gerasimova, A.S. Aleksandrovsky, A.S. Aleksandrovsky, S.M. Zharkov, S.M. Zharkov, and V.V. Slabko, “Effect of visible and UV irradiation on the aggregation stability of CdTe quantum dots,” Journal of Nanoparticle Research, 18, 324 (2016). https://doi.org/10.1007/S11051-016-3638-0

A. Ospanova, Y. Koshkinbayev, A. Kainarbay, T. Alibay, R.K. Daurenbekova, A. Akhmetova, A. Vinokurov, et al., “Investigation of the influence of structure, stoichiometry, and synthesis temperature on the optical properties of CdTe nanoplatelets,” Nanomaterials, 14(22), 1814 (2024). https://doi.org/10.3390/nano14221814

L. Wang, H. Zhang, C. Lu, and L. Zhao, “Ligand exchange on the surface of cadmium telluride quantum dots with fluorosurfactant-capped gold nanoparticles: Synthesis, characterization and toxicity evaluation,” Journal of Colloid and Interface Science, 413, 140-146 (2014). https://doi.org/10.1016/J.JCIS.2013.09.034

T. Kümmell, S.V. Zaitsev, A. Gust, C. Kruse, D. Hommel, and G. Bacher, “Radiative recombination in photoexcited quantum dots up to room temperature: The role of fine-structure effects,” Physical Review B, 81, 241306(R) (2010). https://doi.org/10.1103/PHYSREVB.81.241306

C.H. Wang, T.T. Chen, Y.-F. Chen, M.-L. Ho, C.-W. Lai, and P.-T. Chou, “Recombination dynamics in CdTe/CdSe type-II quantum dots,” Nanotechnology, 19, 115702 (2008). https://doi.org/10.1088/0957-4484/19/11/115702

S.R. Kavanagh, A. Walsh, and D.O. Scanlon, Rapid recombination by cadmium vacancies in CdTe, (Zenodo, 2021). https://doi.org/10.5281/zenodo.4541602

J. Yang, L. Shi, L.-W. Wang, and S.-H. Wei, “Non-radiative carrier recombination enhanced by two-level process: A first-principles study,” Scientific Reports, 6, 21712 (2016). https://doi.org/10.1038/SREP21712

M. Califano, “Origins of photoluminescence decay kinetics in CdTe colloidal quantum dots,” ACS Nano, 9(3), 2960–2967 (2015). https://doi.org/10.1021/NN5070327

B. Omogo, J. Aldana, and C.D. Heyes, “Radiative and non-radiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands,” Journal of Physical Chemistry C, 117(5), 2317–2327 (2013). https://doi.org/10.1021/JP309368Q

M.A. Ruíz-Robles, F. Solis-Pomar, G.T. Aguilar, M.M. Mijares, R.G. Arteaga, O.M. Armenteros, C.D. Gutiérrez-Lazos, et al., “Physico-chemical properties of CdTe/Glutathione quantum dots obtained by microwave irradiation for use in monoclonal antibody and biomarker testing,” Nanomaterials, 14(8), 684 (2024). https://doi.org/10.3390/nano14080684

Published
2025-06-09
Cited
How to Cite
Zokirov, A. I., & Akhmedov, B. B. (2025). Time-Controlled Synthesis of CdTe Quantum Dots for Tunable Photoluminescence. East European Journal of Physics, (2), 324-329. https://doi.org/10.26565/2312-4334-2025-2-40