Interaction of Heavy Metals with β-Lactoglobulin: Molecular Dynamics Study
Abstract
β-Lactoglobulin (β-lg), the predominant whey protein, is renowned for its nutritional and functional attributes, including its ability to bind hydrophobic and charged molecules. These properties make β-lg a promising candidate for applications such as drug delivery systems, nutraceutical carriers, and nanocomposites for environmental remediation, particularly in detecting and removing heavy metals. Despite its potential, the impact of heavy metal binding on β-lg's structure and stability remains insufficiently explored, posing challenges for its advanced applications. In this study, molecular dynamics (MD) simulations were employed to investigate the structural and dynamic responses of β-lg to the binding of heavy metal ions—Cd²⁺, Ni²⁺, Co³⁺, Pb²⁺, and Pt²⁺. A series of 200-ns MD simulations for the metal-protein complexes was conducted at 300 K using GROMACS software and the CHARMM General Force Field. Key structural parameters analyzed included backbone root-mean-square deviation (RMSD), radius of gyration (Rg), solvent-accessible surface area (SASA), and root-mean-square fluctuations (RMSF). The results demonstrated that binding of Cd²⁺, Ni²⁺, Co³⁺, Pb²⁺, and Pt²⁺ destabilized the protein's structure, with notable effects observed in critical regions such as the EF loop, H-strand, and AB loop. The extent of destabilization varied depending on the specific heavy metal ion. These findings emphasize the need for detailed residue-level analyses to fully elucidate the structural changes induced by metal binding and their implications for β-lg's functional properties. This work provides valuable insights into the behavior of β-lg under heavy metal binding and lays the groundwork for developing β-lg-based nanosystems for environmental and biomedical applications.
Downloads
References
M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. Reza Khazdair, and M. Sadeghi, Front Pharmacol. 12, 643972 (2021). https://doi.org/10.3389/fphar.2021.643972
R. Singh, N. Gautam, A. Mishra, and R. Gupta, Indian J. Pharmacol. 43, 246 (2011). https://doi.org/10.4103/253-7613.81505
S.A. Cavaco, S. Fernandes, M. Quina, and L.M. Ferreira. J. Hazard. Mater. 144, 634 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.087
A. Da̧browski, Z. Hubicki, P. Podkościelny, and E. Robens, Chemosphere, 56, 91 (2004). https://doi.org/10.1016/j.chemosphere.2004.03.006
V.L. Kapepula, and P. Luis, Front. Chem. Eng. 6, 1334816 (2024). https://doi.org/10.3389/fceng.2024.1334816
J. Huang, J. et al., Colloids Surf. A Physicochem. Eng. Asp. 520, 361–368 (2017). https://doi.org/10.1016/j.colsurfa.2017.02.001
M.T. Alvarez, C. Crespo, B Mattiasson. Chemosphere, 66, 1677−1683 (2007). doi: 10.1016/j.chemosphere.2006.07.065.
R. Janani, G. Baskar, K. Sivakumar, V. Sunita, et al., Environmental Research, 203, 111815 (2022). https://doi.org/10.1016/j.envres.2021.111815
Z. Raji, A. Karim, A. Karam, and S. Khalloufi, Waste, 1, 775-805 (2023). https://doi.org/10.3390/waste1030046R.
J. Wang, and C. Chen, Biotechnology Advances, 27, 195-226 (2024). https://doi.org/10.1016/j.biotechadv.2008.11.002
L. Zhang, Y. Zeng, and Z. Cheng, J. Mol. Liq. 214, 175-191 (2016). https://doi.org/10.1016/j.molliq.2015.12.013
Y. Luo, Y. Zhang, Z. Xiong, X. Chen, A. Sha et al. Int J Mol Sci. 25(12), 6717 (2024). https://doi.org/10.3390/ijms25126717
X.Yu, W. Liu, X. Deng, S. Yan, and Z. Su, Chemical Engineering Journal, 335, 176 (2017). https://doi.org/10.1016/j.cej.2017.10.148
J. Liu, D. Su, J. Yao, Y. Huang, J. Shao, and X. Chen, J. Mater. Chem. A, 5, 4163 (2017). https://doi.org/10.1039/C6TA10814H
S. Anselmo, S. Cataldo, and T. Avola, et al., J. Colloid Interface Sci. 610, 347 (2022). 10.1016/j.jcis.2021.11.184
S. Anselmo, T. Avola, K. Kalouta, and S. Kataldo, et al., Int. J. Biol. Macr., 239, 124276 (2023). https://doi.org/10.1016/j.ijbiomac.2023.124276
J. Kostal, A. Mulchandani, and W. Chen, Macromolecules, 34, 7, 2257 (2001). https://doi.org/10.1021/ma001973m
M. Peydayesh, S. Bolisetty, T. Mohammadi, and R. Mezzenga, Langmuir, 35, 4161 (2019). https://doi.org/10.1021/acs.langmuir.8b04234.
S. Bolisetty, and R. Mezzenga, Nat. Nanotechnol, 11, 365 (2016) https://doi.org/10.1038/nnano.2015.310.
S. Bolisetty, N. Reinhold, C. Zeder, M. Orozco, and R. Mezzenga, Chem. Commun. 53, 5714 (2017) https://doi.org/10.1039/C7CC00406K
L.C. Ramírez-Rodríguez, L.E. Díaz Barrera, M.X. Quintanilla-Carvajal, et al., Membranes, 10, 386 (2020). https://doi.org/10.3390/membranes10120386
O. Zhytniakivska, U. Tarabara, K. Vus, V. Trusova, and G. Gorbenko, East European Journal of Physics, (1), 497 (2024). https://doi.org/10.26565/2312-4334-2024-1-55
S. Jo, T. Kim, V. G. Iyer, and W. Im, J. Comp. Chem. 29, 1859 (2008), https://doi.org/10.1002/jcc.20945
G. Kontopidis, C. Holt, and L. Sawyer, Journal of Dairy Science, 87, 785 (2004). https://doi.org/10.3168/jds.S0022-0302(04)73222-1
Z. Shafaei, B. Ghalandari, A. Vaseghi, A. Divsalar, et al., Nanomedicine: Nanotechnology, Biology and Medicine, 13, 1685 (2017). https://doi.org/10.1016/j.nano.2017.03.007
K. Lilly, M. Wang, A.A. Orr, S. Bondos, et al., Ind. Eng. Chem. Res. 63(37), 16124 (2024). https://doi.org/10.1021/acs.iecr.4c01774
R. Pearson, J. Chem. Educ. 45, 981 (1968). https://doi.org/10.1021/ed045p581
F. Samari, B. Hemmateenejad, M. Shamsipur, M. Rashidi, and H. Samouei, Inorg. Chem. 51, 3454 (2012). https://doi.org/10.1021/ic202141g
T. Topala, A. Bodoki, L. Oprean, and R. Oprean, Clujul Medical, 87, 215 (2014). https://doi.org/10.15386/cjmed-357
S. Tiwari, and S.R.K. Ainavarapu. Chem Asian J. e202400971 (2024). https://doi.org/10.1002/asia.202400971
K.D. McConnell, N.C. Fitzkee, and J.P. Emerson, Inorg. Chem. 61(3), 1249 (2022). https://doi.org/10.1021/acs.inorgchem.1c03271
A.G. Moulick, and J. Chakrabarti, Phys. Chem. Chem. Phys. 24, 21348 (2022). https://doi.org/10.1039/D2CP02168D
Copyright (c) 2024 O. Zhytniakivska, U. Tarabara, K. Vus, V. Trusova, G. Gorbenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).