Numerical Simulation Study of The Increase in Electrical Efficiency of the CIGS-Based Solar Cell by SCAPS-1D
Abstract
Solar cells are currently the focus of a great deal of research. The aim is to reduce their cost price. To achieve this, we need to reduce the mass of the materials and increase the conversion efficiency of these solar cells. This has motivated research into the use of thin films such as a-Si, CdTe, CIGS. This increase in efficiency requires optimizing the performance of the photovoltaic parameters. In this modeling and simulation work, we use the SCAPS-1D software to study the effect of the recombination speed of the electrons and holes in the CIGS layer, the effect of the thickness of the layers and the effect of the gap energy of each layer of the material used for this solar cell on the short-circuit current Jsc, the open-circuit voltage Voc, the form factor FF and the electrical efficiency η of the CIGS cell for a Mo/p-CIGS/p-Si/In2S3/i-ZnO/Al-ZnO single-junction structure. In this study, we found that recombination speed affects the efficiency of the photovoltaic cell. The gap energy of the absorber layers influences the cell's efficiency, while the other layers (In2S3, ZnO, Al-ZnO) do not have a great influence on solar cell performance and increasing the thickness of the absorber layer has a major influence on efficiency, increasing it up to a certain limit. The thicknesses of the CIGS, p-Si, In2S3, i-ZnO and Al‑ZnO layers need to be in the order of 0.3µm, 0.8µm, 0.05µm, 0.07µm and 0.1µm respectively to achieve better efficiency (31.42%).
Downloads
References
P. Bórawski, L. Holden, and A. Bełdycka-Bórawska, Energy, 270, 126804 (2023). https://doi.org/10.1016/j.energy.2023.126804
H. Sadamura, N. Suzuki, C. Sotome, et al. Electrochemistry, 78(7), 594 (2010). https://doi.org/10.5796/electrochemistry.78.594
A. Jäger-Waldau, Energies, 13(4), 930 (2020). https://doi.org/10.3390/en13040930
A. Jäger-Waldau, PV Status Report, (Publications Office of the European Union, Luxembourg, 2019). https://doi.org/10.2760/326629, JRC118058
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlopet, Progress in Photovoltaics: Research and Applications, 23, 1 (2015). https://doi.org/10.1002/pip.2573
D. Belfennache, D. Madi, R. Yekhlef, L. Toukal, N. Maouche, M.S. Akhtar, and S. Zahra, Semicond. Phys. Quantum. Electron. Optoelectron. 24(4), 378 (2021). https://doi.org/10.15407/spqeo24.04.378
D. Belfennache, N. Brihi, and D. Madi, in: Proceeding of the IEEE xplore, 8th (ICMIC) (2016), 7804164, (2017), pp. 497–502. https://doi.org/10.1109/ICMIC.2016.7804164
R. Ouldamer, D. Madi, and D. Belfennache, in: Advanced Computational Techniques for Renewable Energy Systems. IC-AIRES 2022. Lecture Notes in Networks and Systems, vol. 591, edited by M. Hatti, (Springer, Cham.2023). pp. 700 705, https://doi.org/10.1007/978-3-031-21216-1_71
M. Zotti S. Mazzoleni, L.V. Mercaldo, M.D. Noce, M. Ferrara, P.D. Veneri, M. Diano, et al., Heliyon, 10(4), e26323 (2024). https://doi.org/10.1016/j.heliyon.2024.e26323
D. Belfennache, D. Madi, N. Brihi, M.S. Aida, and M.A. Saeed, Appl. Phys. A, 124, 697 (2018). https://doi.org/10.1007/s00339-018-2118-z
S.M. Govindharajulu, A.K. Jain, and M. Piraviperumal, J. Alloys Compd. 980, 173588 (2024). https://doi.org/10.1016/j.jallcom.2024.173588
J. Raval, B. Shah, D. Kumar, S.H. Chaki, and M.P. Deshpande, Chem. Eng. Sci. 287, 119728 (2024). ,https://doi.org/10.1016/j.ces.2024.119728
I. Repins, M. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi. Progress in Photovoltaics: Research and Applications, 16(3), 235 (2008). https://doi.org/10.1002/pip.822
J. Lindahl, U. Zimmermann, P. Szaniawski, T. Törndahl, A. Hultqvist, P. Salomé, C. Platzer-Björkman, et al., IEEE J. Photovolt. 3(3), 1100 (2013). https://doi.org/10.1109/JPHOTOV.2013.2256232
M. Powalla, P. Jackson, W. Witte, D. Hariskos, S. Paetel, C. Tschamber, and W. Wischmann, Sol. Energy Mater. Sol. Cells, 119, 51 (2013). https://doi.org/10.1016/j.solmat.2013.05.002
A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, et al., Nature Mater, 10, 857 (2011). https://doi.org/10.1038/nmat3122
E. Wallin, U. Malm, T. Jarmar, O. Lundberg, M. Edoff, L. Stolt, et al., Progress in Photovoltaics: Research and Applications, 20, 851 (2012). https://doi.org/10.1002/pip.2246
A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, et al., Progress in Photovoltaics: Research and Applications, 12, 93 (2004). https://doi.org/10.1002/pip.527
M. Kemell, M. Ritala, and M. Leskelä, Crit. Rev. Solid State Mater. Sci. 30, 1 (2005). https://doi.org/10.1080/10408430590918341
C.H. Fischer, M. Bär, T. Glatzel, I. Lauermann, and M.C. Lux-Steiner, Sol. Energy Mater. Sol. Cells, 90(10), 1471 (2006). https://doi.org/10.1016/j.solmat.2005.10.012
K.S. Ramaiah, and V.S. Raja, Sol. Energy Mater. Sol. Cells, 32, 1 (1994). https://doi.org/10.1016/0927-0248(94)90250-X
M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films, 361-362, 527 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1
K. Decock, S. Khelifi, and M. Burgelman, Thin Solid Films, 519(21), 7481 (2011). https://doi.org/10.1016/j.tsf.2010.12.039
M. Burgelman, and J. Marlein, Analysis of graded band gap solar cells with SCAPS, In: Proceedings of the 23rd European photovoltaic solar energy conference, (2008). pp. 2151-2156.
J. Verschraegen, and M. Burgelman, Thin Solid Films, 515(15), 6276 (2007). https://doi.org/10.1016/j.tsf.2006.12.049
S. Degrave, M. Burgelman, and P. Nollet, in: Proceedings of the 3rd world conference on photovoltaic energy conversion, (2003), pp. 487-490. http://hdl.handle.net/1854/LU-404099
A. Niemegeers, and M. Burgelman, in: Proceedings of the 25th IEEE photovoltaic specialists conference, 901e4 (1996). https://doi.org/10.1109/PVSC.1996.564274
R.N. Mohottige, and S.P.K. Vithanage, J. Photochem. Photobiol. A: Chem. 407. 113079 (2021). https://doi.org/10.1016/j.jphotochem.2020.113079
M. Mostefaoui, H. Mazan, S. Khelifi, A. Bouraiou, and R. Dabou, Energy Procedia, 74, 736 (2015). https://doi.org/10.1016/j.egypro.2015.07.809
K. Orgassa, H.W. Schock, and J.H. Werner, Thin Solid Films, 431–432, 387 (2003). https://doi.org/10.1016/S0040-6090(03)00257-8
M. Hashemi, Z, Saki, M. Dehghani, F. Tajabadi, S.M.B. Ghorashi, and N. Taghavinia, Sci. Rep. 12, 14715 (2022). https://doi.org/10.1038/s41598-022-18579-w
R.J. Matson, O. Jamjoum, A.D. Buonaquisti, P.E. Russell, L.L. Kazmerski, P. Sheldon, and R.K. Ahrenkiel, Solar cells, 11(3), 301 (1984). https://doi.org/10.1016/0379-6787(84)90019-X
N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, T. Wada, Sol. Energy Mater. Sol. Cells, 67(1-4), 209 (2001). https://doi.org/10.1016/S0927-0248(00)00283-X
M. Powalla, and B. Dimmler, Thin Solid Films, 361–362, 540 (2000). https://doi.org/10.1016/S0040-6090(99)00849-4
C.K.G. Kwok, H. Tangara, N. Masuko, et al., Sol. Energy Mater. Sol. Cells. 269, 112767 (2024). https://doi.org/10.1016/j.solmat.2024.112767
S. Mahdid, D. Belfennache, and D. Madi, et al., J. Ovonic. Res. 19(5), 535 (2023). https://doi.org/10.15251/JOR.2023.195.535
R. Ouldamer, D. Belfennache, D. Madi, et al., J. Ovonic. Res. 20(1), 45 (2024). https://doi.org/10.15251/JOR.2024.201.45
Copyright (c) 2024 K. Madoui, A. Ghechi, S. Madoui, R. Yekhlef, D. Belfennache, S. Zaiou, Mohamed A. Ali
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).