Investigating the Effect of Gravity Modulation on Weakly Nonlinear Magnetoconvection in a Nonuniformly Rotating Nanofluid Layer

  • Michael I. Kopp Institute for Single Cristals, Nat. Academy of Science Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0001-7457-3272
  • Volodymyr V. Yanovsky Institute for Single Cristals, Nat. Academy of Science Ukraine, Kharkiv , Ukraine; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0003-0461-749X
Keywords: Nanofluid, nonuniformly rotating layer, weakly nonlinear theory, gravity modulation, non-autonomous Ginzburg-Landau equation

Abstract

This paper investigates the impact of gravity modulation on weakly nonlinear magnetoconvection in a nanofluid layer that is nonuniformly rotating. The fundamental equations are obtained for the Cartesian approximation of the Couette flow using the Boussinesq approximation and gravitational modulation. The weakly nonlinear regime is analyzed using the method of perturbations with respect to the small supercritical parameter of the Rayleigh number, considering the effects of Brownian motion and thermophoresis in the nanofluid layer. Heat and mass transfer are evaluated in terms of finite amplitudes and calculated from the Nusselt numbers for the fluid and the volume concentration of nanoparticles. The findings demonstrate that gravitational modulation, nonuniform rotation, and differences in the volume concentration of nanoparticles at the layer boundaries can effectively control heat and mass transfer. Additionally, the negative rotation profile has a destabilizing effect. The study shows that the modulated system conveys more heat and mass than the unmodulated system.

Downloads

Download data is not yet available.

References

S.U.S. Choi, ''Enhancing Thermal Conductivity of Fluids with Nanoparticles,'' In: D. A. Siginer and H. P. Wang, Eds., Developments and Applications of Non-Newtonian Flows, ASME, New York, Vol. 66, 1995, pp. 99-105.

J. Buongiorno. ''Convective Transport in Nanofluids,'' J. Heat Trans. 128, 240-250 (2006). https://doi.org/10.1115/1.2150834

D. Tzou. ''Thermal instability of nanofluids in natural convection,'' Int. J. Heat Mass Transf. 51, 2967-2979 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.014

J. Buongiorno and W. Hu. ''Nanofluid coolants for advanced nuclear power plants.'' Proceedings of ICAPP. Vol. 5. No. 5705. 2005.

D. A. Nield, and A. V. Kuznetsov. ''Thermal instability in a porous medium layer saturated by a nanofluid,'' Int. J. Heat Mass Transfer, 52, 5796-5801 (2009), https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.023

G. Venezian. ''Effect of modulation on the onset of thermal convection,'' J. Fluid Mech. 35, 243-254 (1969). https://doi.org/10.1017/S0022112069001091

P. K. Bhatia and B. S. Bhadauria. ''Effect of Modulation on Thermal Convection Instability,'' Z. Naturforsch. 55a, 957-966 (2000). https://doi.org/10.1515/zna-2000-11-1222

P. M. Gresho, R. Sani. ''The effects of gravity modulation on the stability of a heated fluid layer,'' J. Fluid Mech. 40, 783-806 (1970). https://doi.org/10.1017/S0022112070000447

J. K. Bhattacharjee. '' Rotating Rayleigh-Benard convection with modulation,'' J. Phy. A: Math. Gen. 22, L1135-L1189 (1989). https://doi.org/10.1088/0305-4470/22/24/001

S. Aniss, M. Belhaq, and M. Souhar. ''Effects of a Magnetic Modulation on the Stability of a Magnetic Liquid Layer Heated from Above,'' J. Heat Transfer 123, 428-433 (2001), https://doi.org/10.1115/1.1370501

B. S. Bhadauria, and Palle Kiran. ''Nonlinear thermal Darcy convection in a nanofluid saturated porous medium under gravity modulation,'' Advanced Science Letters 20, 903-910 (2014). https://doi.org/10.1166/asl.2014.5466

B. S. Bhadauria, Palle Kiran, and M. Belhaq. ''Nonlinear thermal convection in a layer of nanofluid under g-jitter and internal heating effects,'' In MATEC Web of Conferences, 16, 09003 EDP Sciences, 2014. https://doi.org/10.1051/matecconf/20141609003

P. Kiran. ''Nonlinear thermal convection in a viscoelastic nanofluid saturated porous medium under gravity modulation,'' Ain Shams Engineering Journal 7, 639-651 (2016). https://doi.org/10.1016/j.asej.2015.06.005

P. Kiran, B. S. Bhadauria, V. Kumar. ''Thermal convection in a nanofluid saturated porous medium with internal heating and gravity modulation,'' J. Nanofluids. 5, 328-339 (2016). https://doi.org/10.1166/jon.2016.1220

P. Kiran, Y. Narasimhulu. ''Centrifugally driven convection in a nanofluid saturated rotating porous medium with modulation,'' J. Nanofluids. 6, 513-523 (2017). https://doi.org/10.1166/jon.2017.1333

P. Kiran, Y. Narasimhulu. ''Internal heating and thermal modulation effects on chaotic convection in a porous medium,'' J. Nanofluids. ;7, 544-555 (2018). https://doi.org/10.1166/jon.2018.1462

P. Kiran, B. S. Bhadauria, R. Roslan. ''The effect of throughflow on weakly nonlinear convection in a viscoelastic saturated porous medium,'' J. Nanofluids. 9, 36-46 (2020). https://doi.org/10.1166/jon.2020.1724

P. Kiran. ''Gravity modulation effect on weakly nonlinear thermal convection in a fluid layer bounded by rigid boundaries,'' Int. J. Nonlinear Sci. Num. Simul. 2021. https://doi.org/10.1515/ijnsns-2021-0054

P. Kiran. ''Nonlinear throughflow and internal heating effects on vibrating porous medium,'' Alex. Eng. J. 55, 757-767 (2016). http://dx.doi.org/10.1016/j.aej.2016.01.012

P. Kiran. ''Throughflow and gravity modulation effects on heat transport in a porous medium,'' J. Appl. Fluid Mech. 9, 1105-1113 (2016). https://doi.org/10.18869/acadpub.jafm.68.228.24682

P. Kiran, S. H. Manjula, and R. Roslan. ''Weak nonlinear analysis of nanofluid convection with g-jitter using the Ginzburg-Landau model,'' Open Physics 20, 1283-1294 (2022). https://doi.org/10.1515/phys-2022-0217

S. H. Manjula, Palle Kiran, and S. N. Gaikwad. ''Study of Heat and Mass Transfer in a Rotating Nanofluid Layer Under Gravity Modulation,'' J. Nanofluids 12, 842-852 (2023). https://doi.org/10.1166/jon.2023.1971

S. Chandrasekhar, ''On the stability of the simplest solution of the equations of hydromagnetics,'' Proc. Natl Acad. Sci. USA 42, 273-276 (1956).

E. P. Velikhov, ''Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field,'' Soviet Physics Jetp. 36, 995-998 (1959).

M. I. Kopp, A. V. Tour, and V. V. Yanovsky. ''Magnetic Convection in a Nonuniformly Rotating Electroconducting Medium,'' JETP 127, 1173-1196 (2018). http://dx.doi.org/10.1134/S106377611812018X

M. I. Kopp, A. V. Tour, and V. V. Yanovsky, ''Magnetic Convection in a Nonuniformly Rotating Electroconducting Medium under the Action of External Magnetic Field Modulation,'' JETP 130, 759-782 (2020). https://doi.org/10.1134/S1063776120050052

M. I. Kopp, A. V. Tur, V. V. Yanovsky. ''Magnetic convection in a nonuniformly rotating electrically conductive medium in an external spiral magnetic field,'' Fluid Dyn. Res. 53, 015509 (2021). https://doi.org/10.1088/1873-7005/abd8dc

M. I. Kopp, A. V. Tour, and V. V. Yanovsky, ''Hydromagnetic Instabilities in a Nonuniformly Rotating Layer of an Electrically Conducting Nanofluid,'' JETP 132, 960-984 (2021). https://doi.org/10.1134/S1063776121050113

M. I. Kopp, A. V. Tur, V. V. Yanovsky. ''Chaotic magnetoconvection in a non-uniformly rotating electroconductive fluids,'' Problems of Atomic Science and Technology 4, 230-234 (2018). https://arxiv.org/abs/1805.11894

M. I. Kopp, A. V. Tur, V. V. Yanovsky. ''Instabilites in the Non-uniformly Rotating Medium with Temperature Stratification in the External Magnetic Field,'' East Eur. J. Phys. 1, 4-33 (2019). https://doi.org/10.26565/2312-4334-2020-1-01

M. I. Kopp, A. V. Tur, V. V. Yanovsky. ''Weakly Nonlinear Magnetic Convection in a Nonuniformly Rotating Electrically Conductive Medium Under the Action of Modulation of External Fields,'' East Eur. J. Phys. 2, 5-37 (2020). https://doi.org/10.26565/2312-4334-2020-2-01

R. Haberman, Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 4th ed., Prentice-Hall, Inc., 2004.

D. A. Nield, A. V, Kuznetsov. ''The onset of convection in a horizontal nanofluid layer of finite depth,'' Eur. J. Mech. B/Fluids 29, 217-223 (2010). https://doi.org/10.1016/j.euromechflu.2010.02.003

R. Chand. ''Thermal instability of rotating nanofluid,'' Int. J. Appl. Math. Mech. 9, 70-90 (2013).

U. Gupta, J. Ahuja, R. K. Wanchoo. ''Magneto convection in a nanofluid layer,'' Int. J. Heat Mass Transf. 64, 1163-1171 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.035

D. Yadav, R. Bhargava, G. S. Agrawal. ''Thermal instability in a nanofluid layer with a vertical magnetic field,'' J. Eng. Math. 80, 147-164 (2013). https://doi.org/10.1007/s10665-012-9598-1

S. H. Manjula, G. Kavitha, P. Kiran. ''Ginzburg Landau Model for Nanofluid Convection in the Presence of Time Periodic Plate Modulation,'' CFD Letters 15, 64-79 (2023). https://doi.org/10.37934/cfdl.15.4.6479

N. L. Aleng, N. Bachok, N. M. Arifin. ''Flow and Heat Transfer of a Nanofluid over an Exponentially Shrinking Sheet,'' Indian J. Sci. Technol. 8, 1-6 (2015). https://doi.org/10.17485/ijst/2015/v8i31/87246

A. Alam, D. N. K. Marwat, A. Ali. ''Flow of nano-fluid over a sheet of variable thickness with non-uniform stretching (shrinking) and porous velocities,'' Adv. Mech. Eng. 13, 1-16 (2021). https://doi.org/10.1177/16878140211012913

B. S. Bhadauria, S. Agarwal. ''Natural convection in a nanofluid saturated rotating porous layer: a nonlinear study,'' Transp. Porous Med. 87, 585-602 (2011). https://doi.org/10.1007/s11242-010-9702-9

Published
2023-09-04
Cited
How to Cite
Kopp, M. I., & Yanovsky, V. V. (2023). Investigating the Effect of Gravity Modulation on Weakly Nonlinear Magnetoconvection in a Nonuniformly Rotating Nanofluid Layer. East European Journal of Physics, (3), 207-222. https://doi.org/10.26565/2312-4334-2023-3-18