Vortex Dynamo in Rotating Media

  • Michael I. Kopp Institute for Single Cristals, Nat. Academy of Science Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0001-7457-3272
  • Volodymyr V. Yanovsky Institute for Single Cristals, Nat. Academy of Science Ukraine, Kharkiv, Ukraine; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0003-0461-749X
Keywords: dynamo theory, large-scale instability, Coriolis force, multiscale asymptotic expansions, α - the effect, solitons, kinks

Abstract

The review highlights the main achievements in the theory of the vortex dynamo in rotating media. Various models of a vortex dynamo in rotating media are discussed: a homogeneous viscous fluid, a temperature-stratified fluid, a moist atmosphere, and a stratified nanofluid. The main analytical and numerical results for these models obtained by the method of multiscale asymptotic expansions are presented.  The main attention is paid to models with a non-spiral external force. For a rotating moist atmosphere, characteristic estimates of the spatial and temporal scales of the generated vortex structures are obtained. New effects of the vortex dynamo in a rotating stratified nanofluid, which arise due to thermophoresis and Brownian motion of nanoparticles, are shown. The results of the analysis of the nonlinear equations of the vortex dynamo in the stationary regime are presented in the form of spiral kinks, periodic nonlinear waves, and solitons.

Downloads

Download data is not yet available.

References

H. P. Greenspan, The Theory of Rotating Fluids (Cambridge University Press, 1968).

V.I. Petviashvili, O.A. Pohkotelov, Solitary Waves in Plasmas and in the Atmosphere (London, 1992). https://doi.org/10.4324/9781315075556

M. Ya. Marov, A. V. Kolesnichenko, Turbulence and Self-Organization. Modeling Astrophysical Objects (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-5155-6

A.S. Monin, Theoretical Geophysical Fluid Dynamics (Springer Dordrecht, 1990). https://doi.org/10.1007/978-94-009-1880-1

Anatoli Tur, Vladimir Yanovsky, Coherent Vortex Structures in Fluids and Plasmas (Springer, 2017). https://doi.org/10.1007/978-3-319-52733-8

M.V. Nezlin, E.N. Snezhkin, Rossby Vortices, Spiral Structures, Solitons (Springer Series in Nonlinear Dynamics, 1993).

A.M. Fridman, A.V. Khoperskov, Physics of Galactic Disks (Cambridge International Science Publishing, 2013).

A.S. Monin, An Introduction to the Theory of Climate (Springer Dordrecht, 1986). https://doi.org/10.1007/978-94-009-4506-7

O. Onishchenko, V. Fedun, W. Horton et al., “The stationary concentrated vortex model”, Climate 9, 39-52 (2021). https://doi.org/10.3390/cli9030039

M. Steenbeck, F. Krause, K. H. Rädler, “Berechnung der mittleren Lorentz Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinfluß ter Bewegung”, Z. Naturforsch 21, 369-376 (1966). https://doi.org/10.1515/zna-1966-0401

S.M. Tobias, “The turbulent dynamo”, J. Fluid Mech. 912, P1 (2021). https://doi.org/10.1017/jfm.2020.1055

F. Rincon, “Dynamo theories”, J. Plasma Phys. 85, 205850401 (2019) https://doi.org/10.1017/S0022377819000539

S.S. Moiseev, R.Z. Sagdeev, A.V. Tur, G.A. Khomenko, and V.V. Yanovsky, “A theory of large-scale structure origination in hydrodynamic turbulence”, Sov. Phys. JETP 58, 1144 (1983).

G. Khomenko, S. Moiseev, & A. Tur, The hydrodynamical alpha-effect in a compressible medium, J. Fluid Mech. 225, 355-369 (1991). https://doi.org/10.1017/S0022112091002082

F. Krause, G. Rüdiger, “On the Reynolds stresses in mean-field hydrodynamics. I. Incompressible homogeneous isotropic turbulence”, Astron. Nachr. 295, 93-99 (1974). https://doi.org/10.1002/asna.19742950205

V.V. Gvaramadze, G.A. Khomenko, and A.V. Tur, “Large-scale vortices in helical turbulence of incompressible fluid”, Geophys. Astrophys. Fluid Dyn. 46, 53-69 (1989). https://doi.org/10.1080/03091928908208904

S.S. Moiseev, P.B. Rutkevich, A.V. Tur, V.V. Yanovsky, “Vortex dynamos in a helical turbulent convection”, Sov. Phys. JETP 67, 294-299 (1988).

S.S. Moiseev, K.R. Oganyan, P.B. Rutkevich et al., “An eddy dynamo and spiral turbulence”. In Integrability and Kinetic Equations for Solitons, edited by V.G. Bar'yachtar, pp. 280-332 (Naukova Dumka, Kiev, 1990).

B.Ya. Shmerlin, M.V. Kalashnik, “Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structures”, Phys. Usp. 56, 473-485 (2013). https://doi.org/10.3367/UFNe.0183.201305d.0497

G.V. Levina, S.S. Moiseev and P.B. Rutkevitch, “Hydrodynamic alpha-effect in a convective system”, Adv. Fluid Mech. 25, 111-161 (2000).

P.B. Rutkevich, “Equation for vortex instability caused by convective turbulence and coriolis force”, JETF 77, 933-938 (1993).

L.L. Kitchatinov, G. Rüdiger, and G. Khomenko, “Large-scale vortices in rotating stratified disks”, Astron. Astrophys. 287, 320-324 (1994).

L.M. Smith, F. Waleffe, “Generation of slow large scales in forced rotating stratified turbulence”, J. Fluid Mech. 451, 145-168 (2002). https://doi.org/10.1017/S0022112001006309

N. Kleeorin, I. Rogachevskii, “Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory”, J. Plasma Phys. 84, 735840303 (2018). https://doi.org/10.1017/S0022377818000417

U. Frisch, Z.S. She, and P.L. Sulem, “Large scale flow driven by the anisotropic kinetic alpha effect”, Physica D 28, 382-392 (1987). https://doi.org/10.1016/0167-2789(87)90026-1

P.L. Sulem, Z.S. She, H. Scholl and U. Frisch, “Generation of Large-Scale Structures in Three-Dimensional Flow Lacking Parity-Invariance. Journal of Fluid Mechanics”, J. Fluid Mech. 205, 341-358 (1989). https://doi.org/10.1017/S0022112089002065

B. Dubrulle, U. Frisch, “Eddy viscosity of parity-invariant flow”, Phys. Rev. A 43, 5355-5364 (1991). https://doi.org/10.1103/physreva.43.5355

A.V. Tur, V.V. Yanovsky, Large-scale instability in hydrodynamics with stable temperature stratification driven by small-scale helical force. ArXiv:1204.5024 v.1[physics. Flu-dyn.](2012). https://doi.org/10.48550/arXiv.1204.5024

A.V. Tur, V.V. Yanovsky, “Non Linear Vortex Structure in Stratified Fluid Driven by Small-scale Helical Force”, Open J. Fluid Dyn. 3, 64-74 (2013). https://doi.org/10.4236/ojfd.2013.32009

M.I. Kopp, A.V. Tur, V.V. Yanovsky, “The Large-scale instability in rotating fluid with small scale force”, Open J. Fluid Dyn. 5, 128-138 (2015). https://doi.org/10.4236/ojfd.2015.52015.

M.I. Kopp, A.V. Tur, V.V. Yanovsky, “Nonlinear vortex dynamo in a rotating stratified moist atmosphere”, J. Exp. Theor. Phys. 124, 1010-1022 (2017). https://doi.org/10.1134/S1063776117060127

M.I. Kopp, A.V. Tur, V.V. Yanovsky, “Nonlinear Vortex Structures in Obliquely Rotating Fluid”, Open J. Fluid Dyn. 5, 311-321 (2015). https://doi.org/10.4236/ojfd.2015.54032

M.I. Kopp, A.V. Tur, V.V. Yanovsky, “The large-scale instability and nonlinear vortex structures in obliquely rotating fluid with small scale non spiral force”, VANT 4, 264-269 (2015).

M.I. Kopp, A.V. Tur, V.V. Yanovsky, “Nonlinear vortex structures in obliquely rotating stratified fluids driven by small scale non helical forces”, Ukr. J. Phys. 66, 478-488 (2021). https://doi.org/10.15407/ujpe66.6.478

M.I. Kopp, A.V. Tur, V.V. Yanovsky, “Vortex Dynamo in a Rotating Stratified Moist Atmosphere driven by Small-scale Non-helical Forces”, Geophys. Astrophys. Fluid Dyn. 115, 551-576 (2021). https://doi.org/10.1080/03091929.2021.1946802

M.I. Kopp, A.V. Tur, V.V. Yanovsky, Vortex Dynamo in an obliquely rotating stratified nanofluid by small-scale non-helical forces, East Eur. J. Phys. 2, 51-72 (2021). https://doi.org/10.26565/2312-4334-2021-2-02

G.V. Levina, M.T. Montgomeri, “The first examination of the helical nature of tropical cyclogenesis”, Doklady AN 434, 401-406 (2010).

G.V. Levina, “On the Path from the Turbulent Vortex Dynamo Theory to Diagnosis of Tropical Cyclogenesis”, Open J. Fluid Dyn. 8, 86-114 (2018). https://doi.org/10.4236/ojfd.2018.81008.

G. Rüdiger, “On the α-Effect for Slow and Fast Rotation”, Astron. Nachr. 299, 217-222 (1978). https://doi.org/10.1002/asna.19782990408

D. Yadav, G.S. Agrawal, R. Bhargava, “Thermal instability of rotating nanofluid layer”, Int. J. Eng. Sci. 49, 1171-1184 (2011). https://doi.org/10.1016/j.ijengsci.2011.07.002

S. Agarwal, B.S. Bhadauria, “Unsteady heat and mass transfer in a rotating nanofluid layer”, Continuum Mech. Thermodyn. 26, 437-445 (2014). https://doi.org/10.1007/s00161-013-0309-6

Published
2023-06-02
Cited
How to Cite
Kopp, M. I., & Yanovsky, V. V. (2023). Vortex Dynamo in Rotating Media. East European Journal of Physics, (2), 07-50. https://doi.org/10.26565/2312-4334-2023-2-01