Nonlinear Dynamo in Obliquely Rotating Stratified Electroconductive Fluid in an Uniformly Magnetic Field

  • Michael I. Kopp Institute for Single Cristals, Nat. Academy of Science Ukraine, Kharkiv, Ukraine https://orcid.org/0000-0001-7457-3272
  • Anatoly V. Tur Universite Toulouse [UPS], CNRS, Institute of Research for Astrophysics and Planetology, Toulouse, France https://orcid.org/0000-0002-3889-8130
  • Konstantin N. Kulik Institute for Single Cristals, Nat. Academy of Science Ukraine, Kharkiv,Ukraine
  • Volodymyr V. Yanovsky Institute for Single Cristals, Nat. Academy of Science Ukraine, Kharkiv, Ukraine; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0003-0461-749X
Keywords: magnetic hydrodynamics, Boussinesq approximation, Coriolis force, multi-scale asymptotic expansions, non-helical turbulence

Abstract

In this paper, we investigated a new large-scale instability that arises in an obliquely rotating convective electrically conducting fluid in an external uniform magnetic field with a small-scale external force with zero helicity. This force excites small-scale velocity oscillations with a small Reynolds number. Using the method of multiscale asymptotic expansions, we obtain the nonlinear equations for vortex and magnetic disturbances in the third order of the Reynolds number. It is shown that the combined effects of the Coriolis force and the small external forces in a rotating conducting fluid possible large-scale instability. The linear stage of the magneto-vortex dynamo arising as a result of instabilities of -effect type is investigated. The mechanism of amplification of large-scale vortex disturbances due to the development of the hydrodynamic - effect taking into account the temperature stratification of the medium  is studied. It was shown that a «weak» external magnetic field contributes to the generation of large-scale vortex and magnetic perturbations, while a «strong» external magnetic field suppresses the generation of magnetic-vortex perturbations. Numerical methods have been used to find stationary solutions of the equations of a nonlinear magneto-vortex dynamo in the form of localized chaotic structures in two cases when there is no external uniform magnetic field and when it is present.

Downloads

Download data is not yet available.

References

J. Larmor, Rep. Brit. Assoc. Adv. Sc., 159-160 (1919).

G. Moffat, Возбуждение магнитного поля в проводящей среде [Magnetic Field Generation in Electrically Conducting Fluids], (Mir, Moscow, 1980), 343 p. (in Russian)

Ya. Zeldovich, A. Ruzmaikin and D. Sokoloff, Magnetic Fields in Astrophysics, (Gordon and Breach, New York, 1983), pp. 265.

G. Rüdiger, R. Hollerbach, The magnetic universe. Geophysical and astrophysical dynamo theory, (Wiley-VCH Verlag GmbH, Weinheim, 2004), pp. 338.

Chris A. Jones, Dynamo theory (University of Leeds, UK, 2007), pp. 90.

J. Parker, Conversations on Electric and Magnetic Fields in the Cosmos, (Princeton University Press, Princeton, 2007), pp. 200.

F. Krauze and K.H. Redler, Магнитная гидродинамика средних полей и теория динамо [Mean-Field Magnetohydrodynamics and Dynamo Theory], (Mir, Moscow, 1984), 314 p. (in Russian)

A. Ruzmaikin, A. Shukurov and D. Sokoloff, Magnetic Fields of Galaxies, (Kluwer, Dordrecht, 1988).

D.D. Sokoloff, R.A. Stepanov, P.G. Frick, Physics-Uspekhi 184 (3), 313-335 (2014), https://doi.org/10.3367/UFNr.0184.201403g.0313.

V.I. Arnold, Ya.B. Zeldovich, A.A. Ruzmalkin, D.D. Sokolov, Sov. Phys. JETP 54(6), 1083-1085 (1981).

V.I. Arnold and B.A. Khesin, Topological Methods in Hydrodynamics, (Springer-Verlag, New York, 1998), pp. 374.

H.P. Greenspan, The theory of Rotating Fluids, (Cambridge At the University Press, 1968), pp. 328.

P.H. Roberts and A.M. Soward, Rotating Fluids in Geophysics, (Academic Press, 1978).

J. Pedlosky, Geophysical Fluid Dynamics (Springer-Verlag, New York, 1987).

V.I. Petviashvili and O.A. Pokhotelov, Solitary Waves in Plasma and Atmosphere, (Gordon&Breach Science Publishers, 1992).

G.D. Aburjania, Kh.Z. Chargazia and O.A. Kharshiladze, Journal of Atmospheric and Solar-Terrestrial Physics, 72, 971-981 (2010), https://doi.org/10.1016/j.jastp.2010.05.008.2010.

M.Ya. Marov and A.V. Kolesnichenko, Mechanics of Turbulence of Multicomponent Gases (Astrophys. and Space Sci. Library, Vol. 269), (Kluwer Acad. Publ., Dordrecht, 2001), pp. 375.

O.G. Onishchenko, O.A. Pokhotelov and N.M. Astafieva, Physics-Uspekhi, 51(6), 577-590 (2008), http://dx.doi.org/10.1070/PU2008v051n06ABEH006588.

M.V. Nezlin and E.N. Snezhkin, Rossby Vortices and Solitons in Free Motion, (Springer, Berlin, Heidelberg, 1993), pp. 223.

H.K. Moffatt, J. Fluid Mech. 35, 117-129 (1969), https://doi.org/10.1017/S0022112069000991.

M. Steenbeck, F. Krause and K.H. Rädler, Z. Naturforsch, 21a, 369-376 (1966).

H.K. Moffatt, J. Fluid Mech. 106, 27-47 (1981), https://doi.org/10.1017/S002211208100150X.

F. Krause and G. Rüdiger, Astron. Nachr. 295, 93-99 (1974).

S.S. Moiseev, R.Z. Sagdeev, A.V. Tur, G.A. Khomenko and V.V. Yanovsky, Sov. Phys. JETP, 58, 1149-1153 (1983).

S.S. Moiseev, P.B. Rutkevitch, A.V. Tur and V.V. Yanovsky, Sov. Phys. JETP, 67, 294-299 (1988).

E.A. Lypyan, A.A. Mazurov, P.B. Rutkevitch and A.V. Tur, Sov. Phys. JETP, 75, 838-841 (1992).

S.S. Moiseev, R.Z. Sagdeev, A.V. Tur, G.A. Khomenko and A.M. Shukurov, Sov. Phys. Dokl. 28, 925-928 (1983).

G.V. Levina, S.S. Moiseev and P. B. Rutkevitch, Advances in Fluid Mechanics, 25, 111-161 (2000).

G.V. Levina, M.V. Starkov, S.E. Startsev, V.D. Zimin and S.S. Moiseev, Nonlinear Processes in Geophysics, 7, 49-58 (2000), https://doi.org/10.5194/npg-7-49-2000.

A.V. Tur, V.V. Yanovsky, e-print arXiv: https://arxiv.org/abs/1204.5024v1.

A.V. Tur and V.V. Yanovsky, Open Journal of Fluid Dynamics, 3, 64-74 (2013), https://doi.org/10.4236/ojfd.2013.32009.

P.B. Rutkevich, JETP, 77, 933-938 (1993).

L.M. Smith and F. Waleffe, Physics of Fluids, 11(6), 1608-1622 (1999), https://doi.org/10.1063/1.870022.

L.M. Smith and F. Waleffe, Journal of Fluid Mechanics, 451, 145-168 (2002).

Yu.A. Berezin, V.P. Zhukov, G.V. Levina, S.S. Moiseev, P.B. Rutkevich and A.V. Tur, Heat Transfer-Soviet Research, 21(2), 181-188 (1989).

L.L. Kitchatinov, G. Rüdiger and G. Khomenko, Astron. Astrophys. 287, 320-324 (1994).

N. Kleeorin, I. Rogachevskii, https://arxiv.org/abs/1801.00493v1.

U. Frishe, Z.S. She and P.L. Sulem, Physica D, 28, 382-392 (1987), https://doi.org/10.1016/0167-2789(87)90026-1.

V.V. Pipin, G. Rüdiger and L.L. Kitchatinov, Geophys. Astrophys. Fluid Dyn. 83(1), 119-133 (1996), https://doi.org/10.1080/03091929608213644.

O.A. Druzhinin and G.A. Khomenko, in: Nonlinear World, edited by V.G. Baryakhtar (World Scientific, Singapore, 1989), pp. 470.

P.B. Rutkevitch, R.Z. Sagdeev, A.V. Tur and V.V. Yanovsky, in: Proceeding of the IV Intern. Workshop on Nonlinear and Turb. Pros. in Physics (Naukova dumka, Kiev, 1989).

M.I. Kopp, A.V. Tur and V.V. Yanovsky, JETP, 120(4), 733-750 (2015), https://doi.org/10.1134/S1063776115040081.

M.I. Kopp, A.V. Tur and V.V. Yanovsky, https://arxiv.org/abs/1612.08860v1.

P.N. Brandt, G.B. Scharmert, S. Ferguson, R.A. Shine, T.D. Tarbell and A.M. Title, Nature, 335, 238-240 (1988).

O.G. Chkhetiani, S.S. Moiseev and E. Golbraikh, JETP, 87(3), 513-517 (1998), https://doi.org/10.1134/1.558688.

M.I. Kopp, A.V. Tur and V.V Yanovsky, Open Journal of Fluid Dynamics, 05(04), 311-321 (2015), https://doi.org/10.4236/ojfd.2015.54032.

M.I. Kopp, A.V. Tur and V.V Yanovsky, https://arxiv.org/abs/1711.08623v1.

G.Z. Gershuni and E.M. Zhukhovitckii, Convective Stability of Incompressible Fluids (Nauka, Moscow, 1972), pp. 392 (in Russian)

S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability (Oxford Uni. Press, London, 1961), pp. 652.

M.I. Kopp, A.V. Tur and V.V. Yanovsky, https://arxiv.org/abs/1706.00223v1.

G. Rüdiger, Astron. Nachr. 299(4), 217-222 (1978).

Yu.L. Bolotin, A.V. Tur and V.V. Yanovsky, Chaos: Concepts, Control and Constructive Use (Series: Understanding Complex Systems, Springer, 2016).

Published
2020-02-23
Cited
0 article
How to Cite
Kopp, M., Tur, A., Kulik, K., & Yanovsky, V. (2020). Nonlinear Dynamo in Obliquely Rotating Stratified Electroconductive Fluid in an Uniformly Magnetic Field. East European Journal of Physics, (1), 5-36. https://doi.org/10.26565/2312-4334-2020-1-01