Nonlinear Dynamo in Obliquely Rotating Stratified Electroconductive Fluid in an Uniformly Magnetic Field
Abstract
In this paper, we investigated a new large-scale instability that arises in an obliquely rotating convective electrically conducting fluid in an external uniform magnetic field with a small-scale external force with zero helicity. This force excites small-scale velocity oscillations with a small Reynolds number. Using the method of multiscale asymptotic expansions, we obtain the nonlinear equations for vortex and magnetic disturbances in the third order of the Reynolds number. It is shown that the combined effects of the Coriolis force and the small external forces in a rotating conducting fluid possible large-scale instability. The linear stage of the magneto-vortex dynamo arising as a result of instabilities of -effect type is investigated. The mechanism of amplification of large-scale vortex disturbances due to the development of the hydrodynamic - effect taking into account the temperature stratification of the medium is studied. It was shown that a «weak» external magnetic field contributes to the generation of large-scale vortex and magnetic perturbations, while a «strong» external magnetic field suppresses the generation of magnetic-vortex perturbations. Numerical methods have been used to find stationary solutions of the equations of a nonlinear magneto-vortex dynamo in the form of localized chaotic structures in two cases when there is no external uniform magnetic field and when it is present.
Downloads
References
J. Larmor, Rep. Brit. Assoc. Adv. Sc., 159-160 (1919).
G. Moffat, Возбуждение магнитного поля в проводящей среде [Magnetic Field Generation in Electrically Conducting Fluids], (Mir, Moscow, 1980), 343 p. (in Russian)
Ya. Zeldovich, A. Ruzmaikin and D. Sokoloff, Magnetic Fields in Astrophysics, (Gordon and Breach, New York, 1983), pp. 265.
G. Rüdiger, R. Hollerbach, The magnetic universe. Geophysical and astrophysical dynamo theory, (Wiley-VCH Verlag GmbH, Weinheim, 2004), pp. 338.
Chris A. Jones, Dynamo theory (University of Leeds, UK, 2007), pp. 90.
J. Parker, Conversations on Electric and Magnetic Fields in the Cosmos, (Princeton University Press, Princeton, 2007), pp. 200.
F. Krauze and K.H. Redler, Магнитная гидродинамика средних полей и теория динамо [Mean-Field Magnetohydrodynamics and Dynamo Theory], (Mir, Moscow, 1984), 314 p. (in Russian)
A. Ruzmaikin, A. Shukurov and D. Sokoloff, Magnetic Fields of Galaxies, (Kluwer, Dordrecht, 1988).
D.D. Sokoloff, R.A. Stepanov, P.G. Frick, Physics-Uspekhi 184 (3), 313-335 (2014), https://doi.org/10.3367/UFNr.0184.201403g.0313.
V.I. Arnold, Ya.B. Zeldovich, A.A. Ruzmalkin, D.D. Sokolov, Sov. Phys. JETP 54(6), 1083-1085 (1981).
V.I. Arnold and B.A. Khesin, Topological Methods in Hydrodynamics, (Springer-Verlag, New York, 1998), pp. 374.
H.P. Greenspan, The theory of Rotating Fluids, (Cambridge At the University Press, 1968), pp. 328.
P.H. Roberts and A.M. Soward, Rotating Fluids in Geophysics, (Academic Press, 1978).
J. Pedlosky, Geophysical Fluid Dynamics (Springer-Verlag, New York, 1987).
V.I. Petviashvili and O.A. Pokhotelov, Solitary Waves in Plasma and Atmosphere, (Gordon&Breach Science Publishers, 1992).
G.D. Aburjania, Kh.Z. Chargazia and O.A. Kharshiladze, Journal of Atmospheric and Solar-Terrestrial Physics, 72, 971-981 (2010), https://doi.org/10.1016/j.jastp.2010.05.008.2010.
M.Ya. Marov and A.V. Kolesnichenko, Mechanics of Turbulence of Multicomponent Gases (Astrophys. and Space Sci. Library, Vol. 269), (Kluwer Acad. Publ., Dordrecht, 2001), pp. 375.
O.G. Onishchenko, O.A. Pokhotelov and N.M. Astafieva, Physics-Uspekhi, 51(6), 577-590 (2008), http://dx.doi.org/10.1070/PU2008v051n06ABEH006588.
M.V. Nezlin and E.N. Snezhkin, Rossby Vortices and Solitons in Free Motion, (Springer, Berlin, Heidelberg, 1993), pp. 223.
H.K. Moffatt, J. Fluid Mech. 35, 117-129 (1969), https://doi.org/10.1017/S0022112069000991.
M. Steenbeck, F. Krause and K.H. Rädler, Z. Naturforsch, 21a, 369-376 (1966).
H.K. Moffatt, J. Fluid Mech. 106, 27-47 (1981), https://doi.org/10.1017/S002211208100150X.
F. Krause and G. Rüdiger, Astron. Nachr. 295, 93-99 (1974).
S.S. Moiseev, R.Z. Sagdeev, A.V. Tur, G.A. Khomenko and V.V. Yanovsky, Sov. Phys. JETP, 58, 1149-1153 (1983).
S.S. Moiseev, P.B. Rutkevitch, A.V. Tur and V.V. Yanovsky, Sov. Phys. JETP, 67, 294-299 (1988).
E.A. Lypyan, A.A. Mazurov, P.B. Rutkevitch and A.V. Tur, Sov. Phys. JETP, 75, 838-841 (1992).
S.S. Moiseev, R.Z. Sagdeev, A.V. Tur, G.A. Khomenko and A.M. Shukurov, Sov. Phys. Dokl. 28, 925-928 (1983).
G.V. Levina, S.S. Moiseev and P. B. Rutkevitch, Advances in Fluid Mechanics, 25, 111-161 (2000).
G.V. Levina, M.V. Starkov, S.E. Startsev, V.D. Zimin and S.S. Moiseev, Nonlinear Processes in Geophysics, 7, 49-58 (2000), https://doi.org/10.5194/npg-7-49-2000.
A.V. Tur, V.V. Yanovsky, e-print arXiv: https://arxiv.org/abs/1204.5024v1.
A.V. Tur and V.V. Yanovsky, Open Journal of Fluid Dynamics, 3, 64-74 (2013), https://doi.org/10.4236/ojfd.2013.32009.
P.B. Rutkevich, JETP, 77, 933-938 (1993).
L.M. Smith and F. Waleffe, Physics of Fluids, 11(6), 1608-1622 (1999), https://doi.org/10.1063/1.870022.
L.M. Smith and F. Waleffe, Journal of Fluid Mechanics, 451, 145-168 (2002).
Yu.A. Berezin, V.P. Zhukov, G.V. Levina, S.S. Moiseev, P.B. Rutkevich and A.V. Tur, Heat Transfer-Soviet Research, 21(2), 181-188 (1989).
L.L. Kitchatinov, G. Rüdiger and G. Khomenko, Astron. Astrophys. 287, 320-324 (1994).
N. Kleeorin, I. Rogachevskii, https://arxiv.org/abs/1801.00493v1.
U. Frishe, Z.S. She and P.L. Sulem, Physica D, 28, 382-392 (1987), https://doi.org/10.1016/0167-2789(87)90026-1.
V.V. Pipin, G. Rüdiger and L.L. Kitchatinov, Geophys. Astrophys. Fluid Dyn. 83(1), 119-133 (1996), https://doi.org/10.1080/03091929608213644.
O.A. Druzhinin and G.A. Khomenko, in: Nonlinear World, edited by V.G. Baryakhtar (World Scientific, Singapore, 1989), pp. 470.
P.B. Rutkevitch, R.Z. Sagdeev, A.V. Tur and V.V. Yanovsky, in: Proceeding of the IV Intern. Workshop on Nonlinear and Turb. Pros. in Physics (Naukova dumka, Kiev, 1989).
M.I. Kopp, A.V. Tur and V.V. Yanovsky, JETP, 120(4), 733-750 (2015), https://doi.org/10.1134/S1063776115040081.
M.I. Kopp, A.V. Tur and V.V. Yanovsky, https://arxiv.org/abs/1612.08860v1.
P.N. Brandt, G.B. Scharmert, S. Ferguson, R.A. Shine, T.D. Tarbell and A.M. Title, Nature, 335, 238-240 (1988).
O.G. Chkhetiani, S.S. Moiseev and E. Golbraikh, JETP, 87(3), 513-517 (1998), https://doi.org/10.1134/1.558688.
M.I. Kopp, A.V. Tur and V.V Yanovsky, Open Journal of Fluid Dynamics, 05(04), 311-321 (2015), https://doi.org/10.4236/ojfd.2015.54032.
M.I. Kopp, A.V. Tur and V.V Yanovsky, https://arxiv.org/abs/1711.08623v1.
G.Z. Gershuni and E.M. Zhukhovitckii, Convective Stability of Incompressible Fluids (Nauka, Moscow, 1972), pp. 392 (in Russian)
S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability (Oxford Uni. Press, London, 1961), pp. 652.
M.I. Kopp, A.V. Tur and V.V. Yanovsky, https://arxiv.org/abs/1706.00223v1.
G. Rüdiger, Astron. Nachr. 299(4), 217-222 (1978).
Yu.L. Bolotin, A.V. Tur and V.V. Yanovsky, Chaos: Concepts, Control and Constructive Use (Series: Understanding Complex Systems, Springer, 2016).
Citations
Weakly Nonlinear Magnetic Convection in a Nonuniformly Rotating Electrically Conductive Medium Under the Action of Modulation of External Fields
(2020) East European Journal of Physics
Crossref
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).