Microstructure, Nano-, and Macro-Indentation Characterization of AISI 302 Steel After High-Temperatures Aging
Abstract
The structural and mechanical studies of the AISI 302 steel aim to design a correct heat treatment in order to optimize its mechanical properties. In this study, we investigated the influence of temperature and time of aging on the structural and mechanical characteristics of the AISI 302 steel. The steel was aged at temperatures of 1100°C and 1200°C and for times ranging from 0 to 6000 minutes. The structural and mechanical characterization techniques used were the metallurgical microscope, nanoindentation technique, and macro-hardness test. At the microstructural level, an increase in the time or temperature of the aging contributed to an increase in the austenite grains size of AISI 302 steel. This microstructural change led to a decrease in the nanohardness and a drop in the macro-hardness between the unaged and aged conditions of AISI 302 steel.
Downloads
References
J.K.L. Lai, C.H. Shek, and K.H. Lo, Stainless steels: An introduction and their recent developments, (Bentham Science Publishers, Beijing, China, 2012), pp. 23.
J. R. Davis, Alloy digest sourcebook: stainless steels, (ASM international, Materials Park, Ohio, USA, 2000), p. 7.
S. L. Chawla, Materials selection for corrosion control, (ASM international, Materials Park, Ohio, USA, 1993), p. 117.
F. Cardarelli, Materials Handbook: A Concise Desktop Reference, 2nd ed. (Springer Science & Business Media, London, UK, 2008), p. 102.
N.A. Savinkov, O.M. Bulanchuk, and A.A. Bizyukov, East. Eur. J. Phys. 3, 102 (2021). https://doi.org/10.26565/2312-4334-2021-3-16
I. Kolodiy, O. Kalchenko, S. Karpov, V. Voyevodin, M. Tikhonovsky, O. Velikodnyi, G.Tolmachova, R. Vasilenko, and G. Tolstolutska, East. Eur. J. Phys. 2, 105 (2021). https://doi.org/10.26565/2312-4334-2021-2-07
V. Voyevodin, M. Tikhonovsky, G. Tolstolutska, H. Rostova, R. Vasilenko, O. Kalchenko, N. Andrievska, and O. Velikodnyi, East. Eur. J. Phys. 3, 93 (2020), https://doi.org/10.26565/2312-4334-2020-3-12
N. Filonenko, A. Babachenko, and G. Kononenko, East Eur. J. Phys. 2, 46 (2019), https://doi.org/10.26565/2312-4334-2019-2-07
V.A. Belous, Yu.A. Zadneprovskiy, N.S. Lomino, I.S. Domnich, and T.I. Bevs, East Eur. J. Phys. 4, 98 (2018), https://doi.org/10.26565/2312-4334-2018-4-12
O. Ben lenda, S. Benmaziane, A. Tara, and E. Saad, E3S Web Conf. 297, (2021), https://doi.org/10.1051/e3sconf/202129701044
D. Dong, F. Chen, and Z. Cui, J. Mater. Eng. Perform. 25, 152 (2016), https://doi.org/10.1007/s11665-015-1810-9
Z. Li, Z. Wen, F. Su, R. Zhang, and Z. Li, J. Mater. Res. 31, 2105 (2016), https://doi.org/10.1557/jmr.2016.248
S. Benmaziane, O. Ben Lenda, S. Saissi, L. Zerrouk, and E. Saad, Recent Pat. Mech. Eng. 15, 486 (2022), http://dx.doi.org/10.2174/2212797615666220816123154
Z. B. Liu, X. Tu, X. H. Wang, J. X. Liang, Z. Y. Yang, Y. Q. Sun, and C. J. Wang, J. Iron Steel Res. Int. 27, 732 (2020), https://doi.org/10.1007/s42243-020-00429-6
R.C. Chen, C. Hong, J.J. Li, Z.Z. Zheng, and P.C. Li, Procedia Eng. 207, 663 (2017), https://doi.org/10.1016/j.proeng.2017.10.1038
C. Yue, L. Zhang, S. Liao, and H. Gao, J. Mater. Eng. Perform. 19, 112 (2010), https://doi.org/10.1007/s11665-009-9413-y
Y. Su, R. Song, T. Wang, H. Cai, J. Wen, and K. Guo, Mater. Lett. 260, 1 (2020), https://doi.org/10.1016/j.matlet.2019.126919
S. Li, Y. Wang, S. Li, H. Zhang, F. Xue, and X. Wang, Mater. Des. 50, 886 (2013), https://doi.org/10.1016/j.matdes.2013.02.061
G. Liu, Y. Wang, S. Li, and X. Wang, J. Mater. Eng. Perform. 27, 4714 (2018), https://doi.org/10.1007/s11665-018-3540-2
O. Ben Lenda, E. Saad, A. Tara, and O. Jbara, Adv. Mater. Process. Technol. 8, 3859 (2022), https://doi.org/10.1080/2374068X.2022.2036443
H.S. Khatak, and B. Raj, Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring (Woodhead Publishing, Cambridge, UK, 2002), p. 6
G.F. Vander Voort, Metallography, Principles and Practice (ASM International, Materials Park, Ohio, USA, 1999), p. 649
M. Yovanovich, in: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, Reno, Nevada, 2006), pp. 1-28.
W.C. Oliver, and G.M. Pharr, J. Mater. Res. 7, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564
G.M. Pharr, W.C. Oliver, and F.R. Brotzen, J. Mater. Res. 7, 613 (1992). https://doi.org/10.1557/JMR.1992.0613
E. Broitman, Tribol. Lett. 65, 1 (2017), https://doi.org/10.1007/s11249-016-0805-5
G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Handbook of Workability and Process Design (ASM international, Materials Park, Ohio, USA, 2003), pp. 250-251
Y. Xu, J. Liu, Y. Zhao, and Y. Jiao, Philos. Mag. 101, 77 (2021). https://doi.org/10.1080/14786435.2020.1821113
M. Militzer, E.B. Hawbolt, and T.R. Meadowcroft, Metall. Mater. Trans. A, 27, 3399 (1996). https://doi.org/10.1007/BF02595433
S.H. Mohamadi Azghandi, V. Ghanooni Ahmadabadi, and A. Zabett, Philos. Mag. 94, 2758 (2014). https://doi.org/10.1080/14786435.2014.932460
B.R. Patterson, and Y. Liun, Metall. Trans. A. 23, 2481 (1992). https://doi.org/10.1007/BF02658051
T.H. Ahn, C.S. Oh, K. Lee, E.P. George, and H.N. Han, J. Mater. Res. 27, 39 (2012), https://doi.org/10.1557/jmr.2011.208
N.K. Mukhopadhyay, and P. Paufler, Int. Mater. Rev. 51, 209 (2006), https://doi.org/10.1179/174328006X102475
O. Ben Lenda, A. Tara, F. Lazar, O. Jbara, A. Hadjadj, and E. Saad, Strength Mater. 52, 71 (2020). https://doi.org/10.1007/s11223-020-00151-4
S.L. Li, Y.L. Wang, and X.T. Wang, Mater. High Temp. 32, 524 (2015). https://doi.org/10.1179/1878641314Y.0000000040
G. Liu, Y. Wang, S. Li, K. Du, and X. Wang, Mater. High Temp. 33, 15 (2016). https://doi.org/10.1179/1878641315Y.0000000014
S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zheng, F. Xue, and X.T. Wang, J. Nucl. Mater. 433, 41 (2013). https://doi.org/10.1016/j.jnucmat.2012.09.004
J. Choi, C.S. Seok, S. Park, and G. Kim, J. Mater. Res. Technol. 8, 2011 (2019). https://doi.org/10.1016/j.jmrt.2018.11.017
E.O. Hall, Proc. Phys. Soc. B, 64, 747 (1951). https://doi.org/10.1088/0370-1301/64/9/303
N.J. Petch, J. Iron Steel Inst. 174, 25 (1953)
A.M. Glezer, and I.E. Permyakova, Melt-Quenched Nanocrystals (CRC Press, Boca Raton, Florida, USA, 2013).
Copyright (c) 2023 Omar Ben Lenda, El Madani Saad, Hajar El Ganich
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).