Structural, Electronic, Mechanical and Thermal Properties of CoVZ (Z= Si, Ge, Sn, Pb) half-Heusler Compounds

  • Lalit Mohan Department of Physics, Banasthali Vidyapith, Banasthali, India
  • Sukhender Sukhender Department of Physics, Banasthali Vidyapith, Banasthali, India
  • Sudesh Kumar Department of Chemistry, Banasthali Vidyapith, Banasthali, India
  • Shiv R. Bhardwaj Department of Physics, B. S.A. College, Mathura, India https://orcid.org/0000-0002-1895-158X
  • Ajay Singh Verma Department of Physics, Banasthali Vidyapith, Rajasthan, India https://orcid.org/0000-0001-8223-7658
Keywords: Half-Heusler compounds, structural properties, electronic properties, mechanical properties

Abstract

Half-Heusler compounds pose unusual behavior because of their variable band gap and as well as both metallic and semi-metallic nature. These compounds can be used in different applications on the basis of band gap tenability. We have discussed the structural, electronic, elastic and magnetic properties of CoVZ (Z = Pb, Si, Sn, Ge) by using WIEN2k simulation code based on density functional theory (DFT). We have optimized the all possible structural configuration of each compound and considered which optimized with lowest energy and lowest equilibrium volume. For determination of electronic exchange correlation energy the generalized gradient approximation (GGA) is used in both platforms. We have also obtained the individual elastic constants, shear modulus, Young's moduli, B/G ratio and Poisson's ratio, which shows that these compounds are ductile except CoVGe shows little ductility.  Debye temperatures are calculated by compression wave velocity, shear wave velocity and with their average value.

Downloads

Download data is not yet available.

References

G.E Bacon, and J.S Plant, J. Phys. F: Metal. Phys. 1, 524-532 (1971), https://doi.org/10.1088/0305-4608/1/4/325.

A. Zakutayev, X. Zhang, A. Nagaraja, L. Yu, S. Lany, T. O. Mason, D. S. Ginley, and A. Zunger, J. Am. Chem. Soc. 135 (2013) 10048-10054, https://doi.org/10.1021/ja311599g.

P. Villars, and L.D Calvert, Pearson's handbook of crystallographic data for intermetallic phases, (ASM International, Materials Park, OH, 1991).

J. Nuss, and M. Jansen, Z. Anorg. Allg. Chem. 628, 1152-1157 (2002), https://doi.org/10.1002/1521-3749(200206)628:5%3C1152::AID-ZAAC1152%3E3.0.CO;2-1.

C. Felser, G. H Fecher, and B. Balke, Ang. Chem. Int. Ed. Engl. 46, 668-699 (2007), https://doi.org/10.1002/anie.200601815.

J. Pierre, R.V. Skolozdra, J. Tobola, S. Kaprzyk, C. Hordequin, M.A. Kouacou, I. Karla, R. Currat, and E. Leliévre-Berna, Properties on request in semi-Heusler phases, J. Alloys & Comp. 262, 101-107 (1997), https://doi.org/10.1016/S0925-8388(97)00337-X.

K. Chen, and L.R. Zhao, J. App. Phy. 93, 2414 (2003), https://doi.org/10.1063/1.1540742.

K. Chen, L.R. Zhao, J.S. Tse, and J.R. Rodgers, Phys. Lett. A. 31, 400-403 (2004), https://dx.doi.org/10.1016/j.physleta.2004.09.034.

P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H Madsen, and D.L. Marks, J. Chem. Phys. 152, 074101 (2020), https://doi.org/10.1063/1.5143061.

K. Schwarz, P.G.K. Blaha, and H. Madsen, Comput. Phys. Commun. 147, 71 (2002), http://sciold.ui.ac.ir/~sjalali/jalali/paper/LAPW/compu_phys_commu147_71_02.pdf.

Z. Wu, and R.E. Cohen, Phys. Rev. B 73, 235116 (2006), https://doi.org/10.1103/PhysRevB.73.235116.

F. Tran, R. Laskowski, P. Blaha, and K Schwarz, Phys. Rev. B 75, 115131 (2006), https://doi.org/10.1103/PhysRevB.75.115131.

J. P Perdew, K Burke, and M Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).

B.M. Wong, and J.G. Cordaro, J. Phys. Chem. C 115, 18333-18341 (2011), https://doi.org/10.1021/jp204849e.

H.U. Schuster, H.W. Hinterkeuser, W. Schäfer, and G. Will, Z. Naturforsch. B, 31, 1540-1541 (1976).

H. Hohl, A. P. Ramirez, C. Goldmann, G. Ernst, B. Wolfling, and E. Bucher, J. Phys. Condens. Matter. 11, 1697–1709 (1999), https://doi.org/10.1088/0953-8984/11/7/004.

C.P. Sebastian, H. Eckert, S. Rayaprol, R.D. Hoffmann, and R. Pöttgen, Solid State Sciences, 8(5), 560-566 (2006), https://doi.org/10.1016/j.solidstatesciences.2006.01.005.

F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244–247 (1944), https://dx.doi.org/10.1073%2Fpnas.30.9.244.

J. Toboła, and J. Pierre, J. Alloys and Comp. 296, 243-252 (2000), https://doi.org/10.1016/S0925-8388(99)00549-6.

M. Catti, Acta Cryst. A, 45, 20-25 (1989), https://doi.org/10.1107/S0108767388008748.

P. Dobson, Physics Bulletin, 36, 506-506 (1985), https://doi.org/10.1088/0031-9112/36/12/027.

M. Born, and K. Huang, Acta Cryst. 9, 837-838 (1956), https://doi.org/10.1107/S0365110X56002370.

W. Voigt, Lehrbook der Kristallphysik, (Teubner, Leipsig, 1928).

I.R. Shein, and A.L. Ivanovskii, Scr. Mater. 59, 1099-1102 (2008), https://doi.org/10.1016/j.scriptamat.2008.07.028.

R. Hill, Proc. Phys. Soc. Lond. A, 65, 349 (1952), https://doi.org/10.1088/0370-1298/65/5/307.

A.M. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004), https://doi.org/10.1016/j.comphy.2003.12.001.

A.S. Verma, and S.R. Bhardwaj, J. Phys. Condens. Matter, 19, 026213 (2006), https://doi.org/10.1088/0953-8984/19/2/026213.

S.F. Pugh, Philos. Mag. 45, 823 (1953), https://doi.org/10.1080/14786440808520496.

E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurements, (McGraw-Hill, New York, 1973), pp. 196.

T. Ichitsubo, H. Ogi, S. Nishimura, T. Seto, M. Hirao, and H. Inui, Phys. Rev. B, 66, 052514 (2002), https://doi.org/10.1103/PhysRevB.66.052514.

E. Franciso, M.A. Blanco, and G. Sanjurjo, Phys. Rev. B, 63, 094107-094115 (2001), https://doi.org/10.1103/PhysRevB.63.094107.

Published
2020-11-19
Cited
How to Cite
Mohan, L., Sukhender, S., Kumar, S., Bhardwaj, S. R., & Verma, A. S. (2020). Structural, Electronic, Mechanical and Thermal Properties of CoVZ (Z= Si, Ge, Sn, Pb) half-Heusler Compounds. East European Journal of Physics, (4), 42-50. https://doi.org/10.26565/2312-4334-2020-4-06

Most read articles by the same author(s)