Current Transfer Mechanism in a Thin-Based Heterosystem Based on A2B6 Compounds

  • Sharifa B. Utamuradova Institute of Semiconductor Physics and Microelectronics, National University of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0002-1718-1122
  • Feruza A. Giyasova Kimyo International University in Tashkent, Uzbekistan https://orcid.org/0000-0003-0746-4986
  • Khayot N. Bakhronov Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Uzbekistan https://orcid.org/0009-0000-4138-3149
  • Murodjon A. Yuldoshev Namangan State Pedagogical Institute, Uzbekistan; Namangan State Technical University, Uzbekistan https://orcid.org/0000-0002-9722-9439
  • Mira R. Bekchanova University of Public Security of the Republic of Uzbekistan
  • Bakhtiyor Ismatov Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University, Uzbekistan
Keywords: Heterosystem, Deposition, Base, Layer, Barrier, Photodiode, Current density, Capacity, SEM, Band diagram

Abstract

The possibility of fabricating a heterosystem based on А2В6 compounds with potential barriers (Au)CdS/Si/CdTe(Au) with a minimum density of surface states is presented, confirmed by measurements of the potential barrier height based on capacitance-voltage methods. Various exponential dependences of the current on the voltage at forward biases associated with a change in the kinetic parameters of the CdS/Si/CdTe structure base are determined, and it is revealed that at current densities of 2.1×10−7 ÷ 0.35×10−6 A/cm−2 in the studied CdS/Si/CdTe structure, the current is limited by recombination in the space charge layer. It is shown that when a reverse bias is applied to the structure, the structure base is completely covered by the space charge accompanied by electron injection from the rear contact, which in turn determines the mechanism of current transfer of the structure.

Downloads

Download data is not yet available.

References

M.A. Scarpulla, et al., “CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects,” Solar Energy Materials and Solar Cells, 255, 112289 (2023). https://doi.org/10.1016/j.solmat.2023.112289

R.R. Kabulov, F.A. Akbarov, and A.A. Alimov, “Time of transition processes in a CdS-CIGS structural solar cells in the short-wave part of the absorption spectrum at different loading resistances,” Nanosystems: Physics, Chemistry, Mathematics, 14(1), 127-131 (2023).

I.M. Dharmadasa, P.A. Bingham, O.K. Echendu, H.I. Salim, T. Druffel, R. Dharmadasa, G.U. Sumanasekera, et al., “Fabrication of CdS/CdTe-Based Thin Film Solar Cells Using an Electrochemical Technique,” Coatings, 4, 380-415 (2014). https://doi.org/10.3390/coatings4030380

T.M. Mazur, V.V. Prokopiv, M.P. Mazur, and U.M. Pysklynets, “Solar cells based on CdTe thin films,” Physics and Chemistry of Solid State, 22(4), 817-827 (2021). https://doi.org/10.15330/pcss.22.4.817-827

Sh.A. Mirsagatov, I.B. Sapaev, Sh.R. Valieva, and D. Babajanov, “Electrophysical and Photoelectric Properties of Injection Photodiode Based on pSi-nCdS-In Structure and Influence of Ultrasonic Irradiation on them,” Journal of Nanoelectronics and Optoelectronics, 9, 1-10 (2014). https://doi.org/10.1166/jno.2014.1685

J. Wang, Y. Chang, L. Huang, K. Jin, and W. Tian, “Designing CdS/Se heterojunction as high-performance self-powered UV-visible broadband photodetector,” APL materials 6, 076106 (2018). https://doi.org/10.1063/1.5042549

H.R. Shakir, O.A. Chichan, M.S. Sada, S.A. Hussein, S.S. Chiad, N.F. Habubi, Y.H. Kadhim, et al., “The effect of aluminum doping on nanostructured CdS optical, structural and sensing characterization” Chalcogenide Letters, 22(1), 77–89 (2025). https://doi.org/10.15251/CL.2025.221.77

S. Abbaspour, B. Mahmoudian, and J.P. Islamian, “Cadmium Telluride Semiconductor Detector for Improved Spatial and Energy Resolution Radioisotopic Imaging,” World J. Nucl. Med. 16(2), 101-107 (2017). https://doi.org/10.4103/1450-1147.203079

V. Gnatyuk, V. Sklyarchuk, T. Aoki, A. Koike, and W. Pecharapa, “Development of CdTe-based nuclear radiation sensors and related devices,” AIP Conference Proceedings, 020012 (2018). https://doi.org/10.1063/1.5053188

M.A. Yuldoshev, “Investigation of optical heterogeneity of lithium niobate crystal under radiation exposure,” Physics AUC, 34, 192-197 (2024). http://cis01.central.ucv.ro/pauc/vol/2024_34/15_PAUC_2024_192_197.pdf

M.A. Yuldoshev, Z.T. Azamatov, A.B. Bakhromov, and M.R. Bekchanova, East Eur. J. Phys. (4), 250-255 (2024), https://doi.org/10.26565/2312-4334-2024-4-25

I.B. Sapaev, Sh.A. Mirsagatov, B. Sapaev, and M.B. Sapaev, “Fabrication and Properties of nSi–pCdTe Heterojunctions,” Inorganic Materials, 56(1), 7–9 (2020). https://doi.org/10.1134/S002016852001015X

F.Kh. Khasanov, I.B. Sapaev, B.S. Mirzaev, Q.A. Shakarov, U.T. Davlatov, and N.N. Abdusattorov, “Si-CdTe-CdS Structures of Electronic Processes,” AIP Conference Proceedings 2432, 050017 (2022). https://doi.org/10.1063/5.0089974

G.H. Mavlonov, Kh.Kh. Uralbaev, B.O. Isakov, Z.N. Umarkhodjaev, and Sh.I. Hamrokulov, East Eur. J. Phys. (2), 237-241 (2025), https://doi.org/10.26565/2312-4334-2025-2-27

J.R. Winger, M.A. Scarpulla, “Grain growth in CdTe films during CdCl2 treatment: TeCl4 theory,” in: IEEE 46th Photovolt. Special. Conf. (PVSC), (IEEE, Chicago, IL, USA, 2019), pp. 1834–1838. https://doi.org/10.1109/PVSC40753.2019.8980923

Sh.A. Mirsagatov, and A.K. Uteniyazov, “Injection photodiode based on p-CdTe film,” Tech. Phys. Lett. 38, 34–37 (2012). https://doi.org/10.1134/S1063785012010099

S.A. Mirsagatov, R.R. Kabulov, and M.A Makhmudov, “Injection photodiode based on an n-CdS/p-CdTe heterostructure,” Physics of Semiconductor Devices, 47, 815 (2013). https://doi.org/10.1134/S106378261306016X

I.M. Karageorgiy-Alkalaev, and A.Yu. Leiderman, Photosensitivity of semiconductor structures with deep impurities, (Tashkent, FAN, 1981). (in Russian)

M. Akramov, B. Eshchanov, S. Usanov, Sh. Norbekov, and D. Matrasulov, “Second-harmonic generation in branched optical waveguides: Metric graphs-based approach,” Physics Letters A, 524, 129827 (2024). https://doi.org/10.1016/j.physleta.2024.129827

F.A. Giyasova, and M.A. Yuldoshev, “Investigation of temporal characteristics of photosensitive heterostructures based on gallium arsenide and silicon,” Chalcogenide Letters, 22(2), 123–129 (2025). https://doi.org/10.15251/CL.2025.222.123

A.M. Bothwell, J.A. Drayton, P.M. Jundt, and J.R. Sites, “Characterization of thin CdTe solar cells with a CdSeTe front layer,” MRS Adv. 4(37) 2053–2062 (2019). https://doi.org/10.1557/adv.2019.332

F.A. Giyasova, “Development of Multilayer Photosensitive Structures Based on GaAs and Si for Optoelectronic Devices,” D.Sci. thesis, Institute of Semiconductor Physics and Microelectronics, 2024. (in Uzbek)

Sh. Utamuradova, Kh. Daliev, Sh. Daliev, S. Muzafarova, K. Fayzullaev, and G. Muzafarova, “Study of a solar cell with a silicon-based photodiode structure,” E3S Web of Conferences, 583, 04006 (2024). https://doi.org/10.1051/e3sconf/202458304006

F. Saker, L. Remache, D. Belfennache, K.R. Chebouki, and R. Yekhlef, “Effect of porosity of mesoporous silicon substrates on CdS thin films deposited by chemical bath deposition,” Chalcogenide Letters, 22(2), 151–166 (2025). https://doi.org/10.15251/CL.2025.222.151

R.I. Jasim, E.H. Hadi, A.A. Mansour, S.A. Hussein, S.S. Chiad, N.F. Habubi, Y.H. Kadhim, et al., “Sensing of nanostructured CdS thin films via several solution concentrations,” Chalcogenide Letters, 22(1), 43–55 (2025). https://doi.org/10.15251/CL.2025.221.43

M.E. Akramov, J.R. Yusupov, M. Ehrhardt, H. Susanto, and D.U. Matrasulov, “Transparent PT-symmetric nonlinear networks” Phys. Scr. 100, 045209 (2025). https://doi.org/10.1088/1402-4896/adb914

H.A. Ahmed, M.Y. Ali, S.S. Hamood, and A.N. Abd, “The importance of CdS and ZnO-NPs in study anti-microbial activity prepared by laser ablation and simple chemical method,” Chalcogenide Letters, 22(1), 11–22 (2025). https://doi.org/10.15251/CL.2025.221.11

S.M. Sze, Semiconductor Devices Physics and Technology, 2nd ed. (John Wiley & Sons, Inc. 2002).

A. Milnes, and D. Feucht, “Heterojunctions and metal-semiconductor transitions”, (Academic Press Inc. 1972).

Sh.B. Utamuradova, Z.T. Azamatov, A.I. Popov, M.R. Bekchanova, M.A. Yuldoshev, and A.B. Bakhromov, East Eur. J. Phys. (3), 278-281 (2024), https://doi.org/10.26565/2312-4334-2024-3-27

Sh.B. Utamuradova, Kh.S. Daliev, Sh.Kh. Daliev, S.A. Muzafarova, K.M. Fayzullaev, and G.A. Muzafarova, “Volt-ampere Characteristics of Hetero Film Photosensitive Structure Au-CdS-nSi-CdTe-Au,” East Eur. J. Phys. (4), 256-261 (2024). https://doi.org/10.26565/2312-4334-2024-4-26

S.M. Sze, and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, 2012).

Sh.A. Mirsagatov, A.S. Achilov, and B.N. Zaveryukhin, “Thin-film detector CdTe structures with a Schottky barrier,” Journal of Surface Physics and Engineering, 11(2), 216-222 (2013). https://periodicals.karazin.ua/pse/article/view/8775/8297 (in Ukrainian)

J.Sh. Abdullayev, I.B. Sapaev, N.Sh. Esanmuradova, S.R. Kadirov, Sh.M. Kuliyev, East Eur. J. Phys. (2), 220-225 (2025). https://doi.org/10.26565/2312-4334-2025-2-24

M.O. Tursunov, Kh.M. Iliev, and B.K. Ismaylov, “High-temperature analysis of silicon properties with manganese-oxygen binary complexes,” Physical Sciences and Technology, 11(1-2), 4-12 (2024). https://doi.org/10.26577/phst2024v11i1a1

K. Zanio, Semiconductors and semimals, (Acad. Press, 1978).

A.Yu. Leiderman, M.K. Minbaeva, FTP, 30(11), 1729 (1996).

Sh.A. Mirsagatov, A.Yu. Leiderman, B.U. Aitbaev, and M.A. Makhmudov, “Investigation of current-voltage characteristics of the n-CdS-p-CdTe structure with an extended layer of the intermediate solid solution,” Phys. Solid State, 51, 2032–2039 (2009). https://doi.org/10.1134/S1063783409100072

Sh.A. Mirsagatov, A.K. Uteniyazov, and A.S. Achilov, “Mechanism of current transport in Schottky barrier diodes based on coarse-grained CdTe films,” Phys. Solid State, 54, 1751–1763 (2012). https://doi.org/10.1134/S1063783412090193

R. Triboulet, P. Siffert, CdTe and Related Compounds; Physics, Defects, Hetero and Nano-Structures, Crystal Growth, Surfaces and Applications, (Elsevier, 2010). https://doi.org/10.1016/C2009-0-61369-6

S. Saidov, A.Yu. Leyderman, Sh.N. Usmonov, and K.A. Amonov, “Effect of injection depletion in p-Si–n-(Si2)1–x(ZnSe)x (0 ≤ x ≤ 0.01) heterostructure,” Semiconductors, 52(9), 1188-1192 (2018). https://doi.org/10.1134/S1063782618090142

A.H. Munshi, et al., “Polycrystalline CdSeTe/CdTe absorber cells with 28 mA/cm2 short-circuit current,” IEEE J. Photovoltaics, 8(1), 310-314 (2018). https://doi.org/10.1109/JPHOTOV.2017.2775139

K. Zanio, Cadmium telluride. Semiconductors and semimetals, edited by R.K. Willardson, and C. Beer, (NY, 1978).

S.H. Wei, S.B. Zhang, and А. Zunger, “First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys,” J. Appl. Phys, 87(3), 1304-1311 (2000). https://doi.org/10.1063/1.372014

A.S. Saidov, K.A. Amonov, and A.Yu. Leiderman, “Study of the dependence of the current-voltage characteristic of p-Si–n-(Si2)1-x-y(Ge2)x(ZnSe)y structures on temperature,” Computational nanotechnology, 6(3), 16-20 (2019). (in Russian)

S. Rakhmanov, K. Matchonov, H. Yusupov, K. Nasriddinov, and D. Matrasulov, “Optical high harmonic generation in Dirac materials,” Eur. Phys. J. B, 98, 35 (2025). https://doi.org/10.1140/epjb/s10051-025-00885-7

G. Ghibaudo, and Q. Rafhay, “Electron and Hole Mobility in Semiconductor Devices,” in: Wiley Encyclopedia of Electrical and Electronics Engineering, (France, 2014), pp 1-13. https://doi.org/10.1002/047134608X.W3148.pub2

A.Yu. Leiderman, and M.K. Minbaeva, “Mechanism of rapid growth of forward current in semiconductor diode structures,” FTP, 30(11), 1729-1738 (1996). (in Russian)

W. Shockley, W. Read, jr., “Statistics of the Recombination of Holes and Electrons,” Phys. Rev. 87, 835-842 (1952). https://doi.org/10.1103/PhysRev.87.835

Sh.A. Mirsagatov, and B.U. Aitbaev, V. Rubinov, FTP, 30, 550 (1996). (in Russian)

M. Lampert, and P. Mark, Currents Injection in solids, (Academic Press, New York, 1973).

J.B. Garcia, “Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas,” Security, 110, (2007).

J.L. Gray, Handbook of Photovoltaic Science and Engineering, Chapter 3, (John Wiley & Sons, Ltd, 2003), pp. 61–112.

Sh.A. Mirsagatov, and I.B. Sapaev, “Mechanism of charge transfer in injection photodetectors based on the M(In)-n-CdS-p-Si-M(In) structure,” Phys. Solid State, 57, 659–674 (2015). https://doi.org/10.1134/S1063783415040162

I. Zidani, Z. Bensaad, L. Hafaifa, H. Abid, A. Hafaifa, East Eur. J. Phys. 1, 141 (2025), https://doi.org/10.26565/2312-4334-2025-1-13

Z.T. Azamatov, Sh.B. Utamuradova, M.A. Yuldoshev, and N.N. Bazarbaev. “Some properties of semiconductor-ferroelectric structures,” East Eur. J. Phys. (2), 187-190 (2023), https://doi.org/10.26565/2312-4334-2023-2-19

J.P. Ponpon, “A review of ohmic and rectifying contacts on cadmium telluride,” Solid State Electron. 28(7), 689-706 (1985). https://doi.org/10.1016/0038-1101(85)90019-X

Published
2025-09-08
Cited
How to Cite
Utamuradova, S. B., Giyasova, F. A., Bakhronov, K. N., Yuldoshev, M. A., Bekchanova, M. R., & Ismatov, B. (2025). Current Transfer Mechanism in a Thin-Based Heterosystem Based on A2B6 Compounds. East European Journal of Physics, (3), 325-335. https://doi.org/10.26565/2312-4334-2025-3-31

Most read articles by the same author(s)