Study of the Influence of Temperature on the Transitions of the CdS/Si/CdTe Heterosystem
Abstract
The study presents the results of an investigation into the temperature dependence of the current–voltage characteristics of CdS/Si/CdTe heterostructures fabricated by thermal evaporation. The study establishes that, as the temperature increases, an exponential rise in current is observed, attributed to the thermally activated nature of conductivity and the reduction of the potential barrier at the interfacial boundaries. In the low-temperature region, the structure exhibits diode-like behavior, whereas at higher applied voltages (20–40 V), an injection transport mechanism becomes dominant. The activation energy of 0.61 eV confirms that the thermal release of carriers from localized states governs charge transport. The results indicate the stability of the barrier height and conduction mechanism over the studied temperature range, highlighting the need to account for thermal effects in the design of photoelectric and optoelectronic devices based on CdS/Si/CdTe structures.
Downloads
References
C. Cao, Q. An, “Elucidating thin film growth mechanisms for high-performance II–VI photovoltaic semiconductors: simulation-driven insights and challenges,” CrystEngComm, 27(21), 3404-3415 (2025). https://doi.org/10.1039/D5CE00244C
S.M. Sivasankar, C. de Oliveira Amorim, and A.F. da Cunha, “Progress in Thin-Film Photovoltaics: A Review of Key Strategies to Enhance the Efficiency of CIGS, CdTe, and CZTSSe Solar Cells,” J. Compos. Sci. 9(3), 143 (2025). https://doi.org/10.3390/jcs9030143
K.G. Zayas-Bazán, P.G. Zayas-Bazán, F. de Moure-Flores, and D. Jiménez-Olarte, “Development of a CdCl2 thermal treatment process for improving CdS/CdTe ultrathin solar cells,” Journal of Materials Science: Materials in Electronics, (2019). https://doi.org/10.1007/s10854-019-01694-2
M. Mathew, “i- ZnO and CdS Buffer Layers for Improving the Efficiency of Copper Tin Sulphide Quantum Dot Sensitized Solar Cells,” East Eur. J. Phys. (2), 258 (2025). https://doi.org/10.26565/2312-4334-2025-2-31
V.T. Mirzayev, B.J. Akhmadaliev, I.I. Yulchiev, and M.M. Madraximov, “Temperature and Infrared Quenching of Equilibrium Conductivity in CdSexS1-x Film,” East Eur. J. Phys. (2), 247 (2025), https://doi.org/10.26565/2312-4334-2025-2-29
T.M. Razykov, K.M. Kuchkarov, A.A. Nasirov, M.P. Pirimmatov, R.R. Khurramov, R.T. Yuldashev, D.Z. Isakov, et al. “Mechanism of Current Performance in Thin-Film Heterojunctions n-CdS/p-Sb2Se3 Obtained by the CMBD Method,” East Eur. J. Phys. (4), 279 (2024). https://doi.org/10.26565/2312-4334-2024-4-29
Sh.B. Utamuradova, Z.T. Azamatov, A.I. Popov, M.R. Bekchanova, M.A. Yuldoshev, and A.B. Bakhromov, East Eur. J. Phys. (3), 278 (2024), https://doi.org/10.26565/2312-4334-2024-3-27
M. Isah, C. Doroody, K.S. Rahman, M.N. Rahman, A.A. Goje, M.E. Soudagar, T.S. Kiong, et al. “Exploring the impact of defect energy levels in CdTe/Si dual-junction solar cells using wxAMPS,” Sci Rep. 27(14), 4804 (2024). https://doi.org/10.1038/s41598-024-55616-2
Sh.B. Utamuradova, Kh.S. Daliev, Sh.Kh. Daliev, S.A. Muzafarova, K.M. Fayzullaev, and G.A. Muzafarova, “Volt-Ampere Characteristics of Hetero Film Photosensitive Structure Au-CdS-nSi-CdTe-Au,” East Eur. J. Phys. (4), 256 (2024). https://doi.org/10.26565/2312-4334-2024-4-26
M.S. Kukurudziak, V.M. Lipka, and V.V. Ryukhtin, “Silicon p-i-n Mesa-Photodiode Technology, East Eur. J. Phys. (3), 385 (2024). https://doi.org/10.26565/2312-4334-2024-3-47
G. Sürücü, H.H. Güllü, and Ö. Bayraklı, “Enhancement in Photovoltaic Characteristics of CdS/CdTe Heterojunction. Journal of Polytechnic, 20(4), 801-805 (2017). https://doi.org/10.2339/politeknik.368993
M. Akramov, B. Eshchanov, S. Usanov, Sh. Norbekov, and D. Matrasulov, “Second-harmonic generation in branched optical waveguides: Metric graphs based approach,” Physics Letters A, 524, 129827 (2024). https://doi.org/10.1016/j.physleta.2024.129827
M. Piliougine, L.E. Garcia-Marrero, K. Lappalainen, and G. Spagnuolo, “Influence of the temperature on the intrinsic parameters of thin-film photovoltaic modules,” Renewable Energy, 240, 122068 (2025). https://doi.org/10.1016/j.renene.2024.122068
P. Dalapati, N.B. Manik, and A.N. Basu, “Influence of temperature on tunneling-enhanced recombination in Si based p-i-n photodiodes,” Journal of Semiconductors, 35(8), 082001 (2013). https://doi.org/10.1088/1674-4926/35/8/082001
S.A. Mirsagatov. R.R. Kabulov, and M.A. Makhmudov, “Injection photodiode based on an n-CdS/p-CdTe heterostructure,” Semiconductors, 47, 825–830 (2013). https://doi.org/10.1134/S106378261306016X
V. Qaradaghi, I. Mejia, and M. Quevedo-Lopez, “Fabrication and Analysis of Thin Film CdTe/CdS-Based Avalanche Photodiodes,” IEEE Electron Device Letters, 38(4), 489 – 492 (2017). https://doi.org/10.1109/led.2017.2670523
S.N. Usmonov, S.A. Mirsagatov, and A.Y. Leyderman, “Study of the current-voltage characteristic of the n-CdS/p-CdTe heterostructure depending on temperature,” Semiconductors, 44, 313-317 (2010). https://doi.org/10.1134/S1063782610030073
Y. Zheng, X. Zhang, X. Yang, Y. Tai, J. Zhang, and B. Li, “Design and Fabrication of CdTe//Si Four-Terminal Mechanical Stacked Solar Cell,” IEEE Journal of Photovoltaics, 14(2), 260-264 (2024). https://doi.org/10.1109/jphotov.2023.3338862
A.E. Rakhshani, “Heterojunction properties of electrodeposited CdTe/CdS solar cells,” J. Appl. Phys. 90(8), 4265-4271 (2001). https://doi.org/10.1063/1.1397279
L. Ma, W. Liu, H. Cai, F. Zhang, and X. Wu, “Catalyst- and template-free low-temperature in situ growth of n-type CdS nanowire on p-type CdTe film and p-n heterojunction properties,” Sci Rep. 13(6), 38858 (2016). https://doi.org/10.1038/srep38858
F.A. Giyasova, “Development of Multilayer Photosensitive Structures Based on GaAs and Si for Optoelectronic Devices,” D.Sci. thesis, Institute of Semiconductor Physics and Microelectronics, Uzbekistan (2024).
F.A. Giyasova, and M.A. Yuldoshev, “Investigation of temporal characteristics of photosensitive heterostructures based on gallium arsenide and silicon,” Chalcogenide Letters, 22(2), 123–129 (2025). https://doi.org/10.15251/CL.2025.222.123
Sh.B. Utamuradova, F.A. Giyasova, K.N. Bakhronov, M.A. Yuldoshev, M.R. Bekchanova, and B. Ismatov, “Current Transfer Mechanism in A Thin-Based Heterosystem Based on A2B6 Compounds,” East Eur. J. Phys. (3), 325 (2025). https://doi.org/10.26565/2312-4334-2025-3-31
S.M. Sze, Y. Li, and K.K. Ng, Physics of Semiconductor Devices, 4th Edition, (Wiley, 2021).
S.R. Bera, and S. Saha, “Fabrication of CdTe/Si heterojunction solar cell,” Applied Nanoscience, 6(7), 1037-1042 (2016). https://doi.org/10.1007/s13204-015-0516-5
F.Kh. Khasanov, I.B. Sapaev, B.S. Mirzaev, Q.A. Shakarov, U.T. Davlatov, and N.N. Abdusattorov, “Si-CdTe-CdS Structures of Electronic Processes,” AIP Conf. Proc. 2432, 050017-1–050017-5 (2022). https://doi.org/10.1063/5.0089974
J.Sh. Abdullayev, I.B. Sapaev, N.Sh. Esanmuradova, S.R. Kadirov, and Sh.M. Kuliyev, “Mathematical Analysis of the Features of Radial p-n Junction: Influence of Temperature and Concentration,” East Eur. J. Phys. (2), 220 (2025). https://doi.org/10.26565/2312-4334-2025-2-24
Sh.N. Usmonov, Sh.A. Mirsagatov, and A.Yu. Leyderman, “Study of the current-voltage characteristic of the nCdS/pCdTe heterostructure depending on temperature,” Semiconductors, 44(3), 313-317 (2010). https://doi.org/10.1134/S1063782610030073
M.A. Yuldoshev, Z.T. Azamatov, A.B. Bakhromov, and M.R. Bekchanova, East Eur. J. Phys. (4), 250 (2024), https://doi.org/10.26565/2312-4334-2024-4-25
T. Jüstel, General Chemistry (Part Inorganic Chemistry) Lecture, April 2024. http://dx.doi.org/10.13140/RG.2.2.36270.93763
N.F. Zikrillayev, M.K. Khakkulov, M.H. Aripova, B.B. Ibragimova, and N.E. Iskandarov, “Electrophysical Properties of Cadmium and Sulfur-doped Silicon with Electronic Conductivity,” International Journal of Advanced Research in Science, Engineering and Technology, 6(12), 12073-12076 (2019).
I.H. Smaili, and G.B. Hmida, “A Review of Minority Carrier Recombination Lifetime Measurements,” International Journal for Research in Applied Science & Engineering Technology (IJRASET), 11(V), 1351-1361 (2023). https://doi.org/10.22214/ijraset.2023.51725
M. Koussour, S. Bekovb, J. Rayimbaev, A. Syzdykova, S. Muminovd, and I. Ibragimov, “Observational constraints on a generalized equation of state model,” Physics of the Dark Universe, 47, 101799 (2025). https://doi.org/10.1016/j.dark.2024.101799
M. Zha, E. Gombia, F. Bissoli, A. Zappettini, and L. Zanotti, “Growth and Deep Level Characterisation of Undoped High Resistivity CdTe Crystals,” Phys. Status Solidi B, 229, 15 (2002). https://doi.org/10.1002/1521-3951(200201)229:1<15::AID-PSSB15>3.0.CO;2-6
Kh.Yu. Rakhimov, H.T. Yusupov, Sh.R. Nurmatov, A. Chaves, and G.R. Berdiyorov, “Wave-packet rectification in graphene with alternating circular electrostatic potential barriers,” J. Appl. Phys. 137, 144302 (2025). https://doi.org/10.1063/5.0250401
I.M. Dharmadasa, and A.A. Ojo, “Unravelling complex nature of CdS/CdTe based thin film solar cells,” Journal of Materials Science: Materials in Electronics, 28(8), 16598-16617 (2017). https://doi.org/10.1007/s10854-017-7615-x
Y.B. Acharya, “Effect of temperature dependence of band gap and device constant on I-V characteristics of junction diode,” Solid-State Electronics, 45(7), 1115-1119 (2001). https://doi.org/10.1016/S0038-1101(01)00139-3
Sh.B. Utamuradova, F.A. Giyasova, M.S. Paizullakhanov, S.Yu. Gerasimenko, M.A. Yuldoshev, S.R. Boydedayev, and M.R. Bekchanova, “Investigation of the functional capability of modified silicon-based photodiodes structure,” Chalcogenide Letters, 22(8), 753–764 (2025). https://doi.org/10.15251/CL.2025.228.753
Z. Wang, Z. Cheng, A.E. Delahoy, and K.K. Chin, “A Study of Light-Sensitive Ideality Factor and Voltage-Dependent Carrier Collection of CdTe Solar Cells in Forward Bias,” IEEE Journal of Photovoltaics, 3(2), 843-851 (2013). https://doi.org/10.1109/jphotov.2013.2247095
Copyright (c) 2025 Feruza A. Giyasova, Khayot N. Bakhronov, Murodjon A. Yuldoshev, Ibrokhim B. Sapaev, Rustamjon G. Ikramov, Farkhod A. Giyasov, Mira R. Bekchanova, Maxmudjon M. Qaxxarov

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



