Effect of Deposition Conditions on Microstructure and Composition of Nitride Monolayer and Carbide-Nitride Multilayer Coatings Based on W and Nb
Abstract
This study investigates the structural and compositional evolution of monolayer WNbN and multilayer WNbN/WNbC coatings deposited by the cathodic arc evaporation. The effects of substrate bias voltage (–50 V to –200 V) and cathode arc current (130 – 150 A for W, 110 – 120 A for Nb) were systematically studied to tailor coating morphology, phase formation, and elemental distribution. Cross-sectional microstructural analysis revealed pseudo-multilayer structures within monolayers due to substrate rotation and limited interdiffusion. Increasing bias voltage promoted densification, grain refinement, and improved adhesion, but also enhanced the re-sputtering of nitrogen, affecting stoichiometry and deposition rates. Multilayer coatings showed well-defined alternations between nitride and carbide layers, with morphology and crystallinity strongly influenced by ion energy and metal ion flux. The structural analysis confirmed the dominance of cubic solid solutions based on WNbN and WNbC, with minor hexagonal W2N and Nb2N detected. Grain sizes ranged from 6 to 15 nm, depending on deposition parameters. Optimal structure was achieved at moderate bias (–120 V) and high W arc current, yielding uniform layers, balanced composition, and enhanced crystallinity. The results demonstrate how controlled process parameters enable the design of high-performance nanocomposite coatings with tunable microstructure and phase composition, suitable for protective applications.
Downloads
References
Z. Zhang, X. Wang, Q. Zhang, Y. Liang, L. Ren, and X. Li, Opt. Laser Technol. 119, 105622 (2019). https://doi.org/10.1016/j.optlastec.2019.105622
O. Kessler, T. Herding, F. Hoffmann, and P. Mayr, Surface and Coatings Technology, 182(2-3), 184 (2004). https://doi.org/10.1016/j.surfcoat.2003.08.054
Y. Zhao, T. Yu, C. Guan, J. Sun, and X. Tan, Ceramics International, 45(16), 20824 (2019). https://doi.org/10.1016/j.ceramint.2019.07.070
J. Deng, J. Liu, Z. Ding, and M. Niu, Materials & Design, 29(9), 1828 (2008). https://doi.org/10.1016/j.matdes.2008.03.007
E. Atar, E.S. Kayali, and H. Cimenoglu, Tribology International, 39(4), 297 (2006). https://doi.org/10.1016/j.triboint.2005.01.038
H.J. Ramos, and N.B. Valmoria, Vacuum, 73(3-4), 549(2004). https://doi.org/10.1016/j.vacuum.2003.12.158
A. Bendavid, P.J. Martin, T.J. Kinder, and E.W. Preston, Surface and Coatings Technology, 163-164, 347 (2003). https://doi.org/10.1016/S0257-8972(02)00623-0
T. Zhang, J.H. Song, X.B. Tian, P.K. Chu, and I.G. Brown, J. Vac. Sci. Technol. А19, 2048 (2001). https://doi.org/10.1116/1.1372896
K.-W. Kim, B.J. Kim, S.H. Lee, T. Nasir, H.K. Lim, I.J. Choi, B.J. Jeong, et al., Coatings, 8(11), 379 (2018). https://doi.org/10.3390/coatings8110379
B.-R. Kim, K.-D. Woo, J.-K. Yoon, J.-M. Doh, and I.-J. Shon, Journal of Alloys and Compounds, 481(1-2), 573 (2009). https://doi.org/10.1016/j.jallcom.2009.03.036
D.T. Quinto, in: 50th Annual Technical Conference Proceedings, 5-11 (2007), pp. 5-11. https://www.svc.org/clientuploads/directory/resource_library/07_005.pdf
J. Ratajski, W. Gulbiński, J. Staśkiewicz, et al., Journal of Achievements in Materials and Manufacturing Engineering, 37(2), 668 (2009). http://jamme.acmsse.h2.pl/papers_vol37_2/37263.pdf
N. Nedfors, O.E. Tengstrand, E. Lewin, et al., Surface & Coatings Technology. 206(2-3), 354 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.021
K. Bobzin, N. Bagcivan, P. Immich, et al., Thin Solid Films, 517(3), 1251 (2008). https://doi.org/10.1016/j.tsf.2008.06.050
C. Zhao, X. Xing, J. Guo, Z. Shi, Y. Zhou, X. Ren, and Q. Yang, Journal of Alloys and Compounds, 788, 852 (2019). https://doi.org/10.1016/j.jallcom.2019.02.284
T. Dash, and B.B. Nayak, Ceramics International, 45(4), 4771 (2018). https://doi.org/10.1016/j.ceramint.2018.11.170
B. Osinger, O. Donzel-Gargand, S. Fritze, U. Jansson, and E. Lewin, Vacuum, 224, 113146 (2024). https://doi.org/10.1016/j.vacuum.2024.113146
Y. Chen, J. Shen, and N. Chen, Solid State Communications, 149(3-4), 121 (2009). https://doi.org/10.1016/j.ssc.2008.11.004
K.V. Chauhan, and S.K. Rawal, Procedia Technology, 14, 430 (2014). https://doi.org/10.1016/j.protcy.2014.08.055
M. Ghufran, G.M. Uddin, S.M. Arafat, M. Jawad, and A. Rehman, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 235(1), 196 (2020). https://doi.org/10.1177/1350650120933412
R. Haubner, M. Lessiak, R. Pitonak, A. Köpf, and R. Weissenbacher, International Journal of Refractory Metals and Hard Materials, 62B, 210 (2017). https://doi.org/10.1016/j.ijrmhm.2016.05.009
A.R. Naghashzadeh, A. Shafyei, and F. Sourani, J. of Mater. Eng. and Perform. 31, 4335 (2022). https://doi.org/10.1007/s11665-021-06533-2
A. Pogrebnjak, K. Smyrnova, and O. Bondar, Coatings, 9(3), 155, (2019). https://doi.org/10.3390/coatings9030155
J.S. Koehler, Physical Review B, 2, 547 (1970). https://doi.org/10.1103/PhysRevB.2.547
X. Junhua, G. Mingyuan, and L. Geyang, Journal of Materials Science, 35, 3535 (2000). https://doi.org/10.1023/A:1004853211220
P.M. Anderson, T. Foecke, and P.M. Hazzledine, MRS Bulletin, 24, 27 (1999). https://doi.org/10.1557/S0883769400051514
J.C. Caicedo, A. Guerrero, and W. Aperador, Vacuum, 143, 217 (2017). https://doi.org/10.1016/j.vacuum.2017.06.015
Y. Li, Q. Ye, Y. Zhu, et al., Surface and Coatings Technology, 362, 27 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.091
A.D. Pogrebnjak, V.I. Ivashchenko, P.L. Skrynskyy, et al., Composites Part B: Engineering, 142, 85 (2018). https://doi.org/10.1016/j.compositesb.2018.01.004
A. González-Hernández, A.B. Morales-Cepeda, M. Flores, et al., Coatings, 11(7), 797 (2021). https://doi.org/10.3390/coatings11070797
S. Zhang, E. Byon, M. Li, et al., Thin Solid Films, 519(6), 1901 (2011). https://doi.org/10.1016/j.tsf.2010.10.024
I. V. Serdyuk, V. O. Stolbovyi, A. V. Dolomanov, and V. M. Domnych, Metallofiz. Noveishie Tekhnol. 44(4), 547 (2022). (in Ukrainian). https://doi.org/10.15407/mfint.44.04.0547
O.V. Maksakova, V.M. Beresnev, S.V. Lytovchenko et al., East European Journal of Physics, (1), 396 (2025). https://doi.org/10.26565/2312-4334-2025-1-49
Citations
Maksakova Olga, Beresnev Vyacheslav, Lytovchenko Serhii, Sahul Martin, Horokh Denys, Mazilin Bohdan & Afanasieva Inna (2025)
Crossref
Copyright (c) 2025 O.V. Maksakova, V.M. Beresnev, S.V. Lytovchenko, D.V. Horokh, B.O. Mazilin, I. Afanasieva, M. Čaplovičova, M. Sahul

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



