Anisotropic Cosmological Model in a Modified Theory of Gravitation

Keywords: LRS Bianchi Type-I, f(R, T) theory, Exponential Functional Form, Perfect Fluid

Abstract

In this research, spatially homogeneous and anisotropic LRS Bianchi type-I cosmological model in f(R, T) theory is discussed by choosing the specific form as f(R, T) = R + μe-γR + λT, here R is the Ricci scalar, T is the trace of the energy-momentum tensor, μ, γ, and λ are constants. In this research the functional form consists of an exponential function which is more generalised than linear, quadratic and other polynomials. The solutions of the field equations are derived by considering the following two conditions (i) the scale factor ɑ(t) is considered as a hybrid expansion law. By assumption of this scale factor, we can obtain the deceleration parameter as a function of the time dependent variable (ii) σ ꭀ θ (the proportionality of shear scalar with expansion scalar). For the obtained model, the physical and geometrical properties like as Hubble parameter (H), expansion scalar (θ), volume (V), pressure (p), the energy density (ρ), equation of state (ω) parameter, state-finder parameter (r, s), deceleration parameter (q), jerk parameter (j) are discussed. The graphical behavior of all the parameters of the model is examined with respect to redshift (z) by taking two different values of μ =−2.985, −2.902. In the discussion of all energy conditions, it is noticed that DEC is satisfied for both the values of μ, whereas NEC is satisfied in past (z > 0), present (z = 0), and violated in future (z < 0) for μ = −2.985, −2.902. For both values of μ, the SEC is violated. The violation of SEC represents the accelerating expansion of the cosmos. The obtained results in the model match with recent observational data.

Downloads

References

K. Bamba, et al., Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8

E. J. Copeland, et al., Int. J. Mod. Phys. D, 15, 1753 (2006). http://dx.doi.org/10.1142/S021827180600942X

L. Amendola, and S. Tsujikawa, (Cambridge University Press, 2010).

A. G. Riess, et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

S. Nojiri, and S. D. Odintsov, Phys. Rep. 505, 59 (2011). https://doi.org/10.1016/j.physrep.2011.04.001

S. Nojiri, et al., Phys. Rept. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001

A. Kamenshchik, et al., Phys. Lett. B, 511, 265 (2001). https://doi.org/10.1016/S0370-2693(01)00571-8

V. Gorini, et al., Phys. Rev. D, 67, 063509 (2003). https://doi.org/10.1103/PhysRevD.67.063509

B. Ratra, and P. J. E. Peebles, Phys. Rev. D, 37, 3406 (1988). https://doi.org/10.1103/PhysRevD.37.3406

R. R. Caldwell, Phys. Lett. B, 545, 23 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3

T. Chiba, T.L. Smith, and A. L. Erickcek, Phys. Rev. D, 75, 124014 (2007). https://doi.org/10.1103/PhysRevD.75.124014.

S. Nojiri, S. D. Odintsov, in: Problems of Modern Theoretical Physics. A Volume in Honour of Prof. Buchbinder, I.L. in the Occasion of his 60th Birthday, pp. 266-285. (HTSPU Publishing, Tomsk, 2010).

A. A. Starobinsky, Phys. Lett. B, 91, 99 (1980). https://doi.org/10.1016/0370-2693(80)90670-X

H. A. Buchdahl, Monthly Notices of the Royal Astronomical Society, 150, 1 (1970). https://doi.org/10.1093/mnras/150.1.1

R. Myrzakulov, et al., Eur. Phys. J. C, 75, 444 (2015). https://doi.org/10.1140/epjc/s10052-015-3672-6

A. O. Barvinsky, et al., Eur. Phys. J. C, 75, 584 (2015). https://doi.org/10.1140/epjc/s10052-015-3817-7

T. Harko, et al., Phys. Rev. D, 84, 024020 (2011). https://doi.org/10.1103/PhysRevD.84.024020

B. C. Paul, et al., Phys. Rev. D, 79, 083534 (2009). https://doi.org/10.1103/PhysRevD.79.083534

P. K. Sahoo, et al., Eur. Phys. J. C, 78, 46 (2018). https://doi.org/10.1140/epjc/s10052-018-5538-1

P. H. R. S. Moraes, et al., Gen. Relativ. Gravit. 52, 32 (2020). https://doi.org/10.1007/s10714-020-02681-3

I. Noureen, and M. Zubair, Eur. Phys. J. C, 75, 62 (2015). https://doi.org/10.1140/epjc/s10052-015-3289-9

P. H. R. S. Moraes, and P.K. Sahoo, Eur. Phys. J. C, 79, 677 (2019). https://doi.org/10.1140/epjc/s10052-019-7206-5

Z. Yousaf, et al., Eur. Phys. J. Plus, 132, 268 (2017). https://doi.org/10.1140/epjp/i2017-11541-6

H. Stephani, et al., Exact solutions of Einstein’s field equations, (Deutscher Verlag Der Wissenschaften, Berlin, 1980).

Y. Sobhanbabu, et al., New Astronomy, 104, 102066 (2023). https://doi.org/10.1016/j.newast.2023.102066

G. G. Luciano, arXiv:2301.12488 [gr-qc], https://doi.org/10.48550/arXiv.2301.12488

E. N. Saridakis, Phys. Review D, 2020, 102, 123525 (2020). https://doi.org/10.1103/PhysRevD.102.123525

G. P. Singh, et al., Chin. J. Phys. 54, 895 (2016). https://doi.org/10.1016/j.cjph.2016.10.005

E. A. Hegazy, and F. Rahaman, Indian J. Phys. 93, 1643 (2019). https://doi.org/10.1007/s12648-019-01424-8

E. Gudekli, and A. Caliskan, AIP Conf. Proc. 2042, 020052(2018). https://doi.org/10.1063/1.5078924

P. K. Sahoo, and M. Sivakumar, Astrophys. Space Sci. 357, 60 (2015). https://doi.org/10.1007/s10509-015-2264-0

P. Sahoo, and R. Reddy, Astrophys. 2, 61 (2017). https://doi.org/10.1007/s10511-018-9522-0

B.V. Kumar, and D. Archana, Int. J. Geom. Methods Mod. Phys. 17, 2050203 (2020). https://doi.org/10.1142/S0219887820502035

R. K. Tiwari, et al., Int. J. Geom. Methods Mod. Phys. 17, 2050187 (2020). https://doi.org/10.1142/S021988782050187X

Y. Sobhanbabu, et al., East Eur. J. Phys. (2), 48-63 (2024). https://doi.org/10.26565/2312-4334-2024-2-04

S. Gupta, et al., Physica Script. 100, 015035 (2024). https://doi.org/10.1088/1402-4896/ad9e51

N. Myrzakulov, et al., Phys. Dark Universe, 47, 101790 (2024). https://doi.org/10.1016/j.dark.2024.101768

M. Sharif, and M. Zubair, J. Phys. Soc. Jpn. 82, 014002 (2013). https://doi.org/10.7566/JPSJ.82.014002

P. Sahoo, and R. Reddy, Astrophys. 61, 134 (2018). https://doi.org/10.1007/s10511-018-9522-0

R. K. Tiwari, et al., Int. J. Geom. Methods Mod. Phys. 17, 2050187 (2020). https://doi.org/10.1142/S021988782050187X

B. K. Bishi, et al., Int. J. Geom. Methods Mod. Phys. 14, 1750158 (2017). https://doi.org/10.1142/S0219887817501584

M. F. Shamir, and Z. Raza, Can. J. Phys. 93, 37 (2015). https://doi.org/10.1139/cjp-2014-0338

M. E. Rodrigues, et al., Int. J. Mod. Phys. D, 23, 1450004 (2014). https://doi.org/10.1142/S0218271814500047

K. S. Thorne, Astrophys. J. 148, 51 (1967). https://doi.org/10.1086/149127

C. B. Collins, J. Math. Phys. 18, 2116 (1977). https://doi.org/10.1063/1.523191

B. Saha, et al., Astrophys. Space Sci. 342, 257 (2012). https://doi.org/10.1007/s10509-012-1155-x

O. Akarsu, et al., J. Cosmol. Astropart. Phys. 01, 022 (2014). https://doi.org/10.1088/1475-7516/2014/01/022

V. Sahni, et al., J. Exp. Theor. Phys. Lett. 77, 201 (2003). https://doi.org/10.1134/1.1574831

S. Capozziello, et al., Phys. Rept. 509, 167 (2011). https://doi.org/10.1016/j.physrep.2011.09.003

S. Capozziello, et al., Phys. Rev. D, 91, 124019 (2015). https://doi.org/10.1103/PhysRevD.91.124019

J. Santos, et al., Phys. Rev. D, 76, 083513 (2007). https://doi.org/10.1103/PhysRevD.76.083513

J. Santos, et al., Int. J. Mod. Phys. D, 19, 1315 (2010). https://doi.org/10.1142/S0218271810017639

D. Liu, and M. J. Reboucas, Phys. Rev. D, 86, 083515 (2012). https://doi.org/10.1103/PhysRevD.86.083515

M. Sharif, and M. Zubair, J. High Energy Phys. 2013, 79 (2013). https://doi.org/10.1007/JHEP12(2013)079

A. Raychaudhuri, Phys. Rev. 98, 1123 (1955). https://doi.org/10.1103/PhysRev.98.1123

Published
2025-03-03
Cited
How to Cite
Satyanarayana, G., Vinutha, T., Sobhanbabu, Y., Srinivasu, B., Prasuna, P. J., & Raju, M. P. (2025). Anisotropic Cosmological Model in a Modified Theory of Gravitation. East European Journal of Physics, (1), 357-366. https://doi.org/10.26565/2312-4334-2025-1-44