Modified QCD Ghost Scalar Field Dark Energy in Anisotropic and Interacting Universe Models

  • P. Jnana Prasuna Department of Basic Sciences, Sri Vasavi Engineering College (A), Tadepalligudem, India https://orcid.org/0009-0000-2369-7339
  • T. Chinnappalanaidu Department of Mathematics, Vignan’s Institute of Information Technology(Autonomous), Visakhapatnam, India https://orcid.org/0000-0001-6902-2820
  • G. Satyanarayana Department of Applied Sciences & Humanities, Sasi Institute of Technology & Engineering (A), Tadepalligudem, India https://orcid.org/0000-0003-3452-1675
  • N. Krishna Mohan Raju Department of Engineering Mathematics and Humanities, SRKR Engineering College (A), Bhimavaram, India https://orcid.org/0000-0003-0735-4293
  • K. Navya Department of Basic Science and Humanities, Centurion University of Technology and Management, Vizianagaram, India https://orcid.org/0000-0001-9604-7783
  • Y. Sobhanbabu Department of Engineering Mathematics and Humanities, SRKR Engineering College (A), Bhimavaram, India https://orcid.org/0000-0003-0717-1323
Keywords: Bianchi type-III, QCD ghost dark energy, Cold dark matter, Scalar field models

Abstract

In this work, we study the Bianchi type-III interacting framework of modified QCD ghost dark energy with cold dark matter is being considered for illustrating the accelerated expansion of the Universe. The equation of state parameter shows evolution of the universe completely varies in quintessence region only. The dynamics of scalar field and corresponding potential of various scalar field models shows consistence behavior with the accelerated expansion phenomenon. Also, the kinetic energy term of k-essence models lies within the range where equation of state parameter represents the accelerated expansion of the Universe.

Downloads

Download data is not yet available.

References

A.G. Riess, et al. Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter, et al. Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

P.J.E. Peebles, Rev. Mod. Phys. 75, 559 (2003). https://doi.org/10.1103/RevModPhys.75.559

L. Amendola, and S. Tsujikawa, Dark Energy: Theory and Observations, (Cambridge University Press, Cambridge, 2010).

A.Y. Kamenshchik,U. Moschella, andV. Pasquier, Phys. Lett. B, 511, 265 (2001). https://doi.org/10.1016/S0370-2693(01)00571-8

X. Zhang, F.Q. Wu, and J. Zhang, J. Cosmol. Astropart. Phys. 01, 003 (2006). https://doi.org/10.1088/1475-7516/2006/01/003

S.D.H. Hsu, Phys. Lett. B, 594, 13 (2004). https://doi.org/10.1016/j.physletb.2004.05.020L

M. Li : Phys. Lett. B 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014

H. Wei, and R.G. Cai, Phys. Lett. B, 660, 113 (2008). https://doi.org/10.1016/j.physletb.2007.12.030

H. Wei, Class. Quantum Gravity, 29, 175008 (2012). https://doi.org/10.1088/0264-9381/29/17/175008

M. Sharif, and A. Jawad, Eur. Phys. J. C, 73, 2382 (2013). https://doi.org/10.1140/epjc/s10052-013-2382-1

M. Sharif, and A. Jawad, Eur. Phys. J. C, 73, 2600 (2013). https://doi.org/10.1140/epjc/s10052-013-2600-x

S. Chattopadhyay, Eur. Phys. J. Plus, 129, 82 (2014). https://doi.org/10.1140/epjp/i2014-14082-6

A.R. Urban, and A.R. Zhitnitsky, Phys. Rev. D, 80, 063001 (2009). https://doi.org/10.1103/PhysRevD.80.063001

A.R. Urban, and A.R. Zhitnitsky, Nucl. Phys. B, 835, 135 (2010). https://doi.org/10.1016/j.nuclphysb.2010.04.001

Nobuyoshi Ohta, Phys. Lett. B, 695, 41 (2011). https://doi.org/10.1016/j.physletb.2010.11.044

R.G. Cai, et al. Phys. Rev. D, 86, 023511 (2012). https://doi.org/10.1103/PhysRevD.86.023511

E.J. Copeland, M. Sami, et al. Int. J. Mod. Phys. D, 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X

K. Bamba, S. Capozziello, et al. Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8

C. Rosenzweig, J. Schechter, et al. Phys. Rev. D, 21, 3388 (1980). https://doi.org/10.1103/PhysRevD.21.3388

P. Nath, and R. Arnowitt, Phys. Rev. D, 23, 473 (1981). https://doi.org/10.1103/PhysRevD.23.473

F.R. Urban, and A.R. Zhitnitsky, Phys. Lett. B, 688, 9 (2010). https://doi.org/10.1016/j.physletb.2010.03.080

F.R. Urban, A.R. Zhitnitsky, Phys. Lett. B 688,9 (2010). https://doi.org/10.1016/j.physletb.2010.03.080

M.M. Forbes, and A.R. Zhitnitsky, Phys. Rev. D, 78, 083505 (2008). https://doi.org/10.1103/PhysRevD.78.083505

E. Ebrahimi, and A. Sheykhi, Int. J. Mod. Phys. D, 20, 2369 (2011). https://doi.org/10.1142/S021827181102041X

A. Sheykhi, M.S. Movahed, and E. Ebrahimi, Astrophys. Space Sci.,339, 93 (2012). https://doi.org/10.1007/s10509-012-0977-x

A. Sheykhi, and A. Bagheri, Europhys. Lett. 95, 39001 (2011). https://doi.org/10.1209/0295-5075/95/39001

A. Rozas-Fernandez, Phys. Lett. B, 709, 313 (2012). https://doi.org/10.1016/j.physletb.2012.02.030

K. Karami, and K. Fahimi, Class. Quantum Grav. 30, 065018 (2013). https://doi.org/10.1088/0264-9381/30/6/065018

K. Karami, A. Abdolmaleki, S. Asadzadeh, Z. Safari, Eur. Phy.J. C 73, 2565 (2013). https://doi.org/10.1140/epjc/s10052-013-2565-9

R.G. Cai, Z.L. Tuo, et al. Phys. Rev. D, 86, 023511 (2012). https://doi.org/10.1103/PhysRevD.86.023511

A.R. Zhitnitsky, Phys. Rev. D, 86, 045026 (2012). https://doi.org/10.1103/PhysRevD.86.045026

R.G. Cai, Z.L. Tuo, et al. Phys. Rev. D, 86, 023511 (2012). https://doi.org/10.1103/PhysRevD.86.023511

R. Garcia-Salcedo, T. Gonzalez, et al. Phys. Rev. D 88, 043008 (2013). https://doi.org/10.1103/PhysRevD.88.043008

X. Zhang, Phys. Rev. D, 74, 103505 (2006). https://doi.org/10.1103/PhysRevD.74.103505

M.R. Setare, Phys. Lett. B, 642, 1 (2006). https://doi.org/10.1016/j.physletb.2006.09.027

L. N. Granda, and A. Oliveros, Phys. Lett. B, 671, 199 (2009). https://doi.org/10.1016/j.physletb.2008.12.025

K. Karami, and A. Fehri, Phys. Lett. B, 684, 61 (2010). https://doi.org/10.1016/j.physletb.2009.12.060

J. Zhang, X. Zhang, and H. Liu, Eur. Phys. J. C, 52, 693 (2007). https://doi.org/10.1140/epjc/s10052-007-0408-2

A. Rozas-Fern´andez, Phys. Lett. B, 709, 313 (2012). https://doi.org/10.1016/j.physletb.2012.02.030

Sumaira Naz and Asghar Qadir, J. Phys. Conf. Ser. 354, 012012 (2012). https://doi.org/10.1088/1742-6596/354/1/012012

M. Jamil, and M. A. Farooq, JCAP, 03, 001 (2010). https://doi.org/10.1088/1475-7516/2010/03/001

A. Sheykhi, Phys. Rev. D, 84, 107302 (2011). https://doi.org/10.1103/PhysRevD.84.107302

A. Jawad, U. Debnath and F. Batool, Commun. Theor. Phys. 64, 590 (2015). https://doi.org/10.1088/0253-6102/64/5/590

A. Jawad, Astrophys. Space Sci. 357, 19 (2015). https://doi.org/10.1007/s10509-015-2299-2

F.R. Urban, and A.R. Zhitnitsky, J. Cosmol. Astropart. Phys. 09, 018 (2009). https://doi.org/10.1088/1475-7516/2009/09/018

J. Abdul, U. Dednath, and F. Batool, Commun. Theor. Phys. 64, 590 (2015). https://doi.org/10.1088/0253-6102/64/5/590

A. Sheykhi, Phys. Rev. D, 84, 107302 (2011). https://doi.org/10.1103/PhysRevD.84.107302

M. Sharif, and A. Jawad, Eur. Phys. J. C, 72, 2097 (2012). https://doi.org/10.1140/epjc/s10052-012-2097-8

M. Sharif, and M.F. Shamir, Class. Quantum Gravity, 26, 235020 (2009). https://doi.org/10.1088/0264-9381/26/23/235020

M. Sharif, and M. Zubair, JCAP, 03, 028 (2012). https://doi.org/10.1088/1475-7516/2012/03/028

M. Thorsrud, D.F. Mota, et al. JHEP, 10, 066 (2012). https://doi.org/10.1007/JHEP10(2012)066

R. Garc´ıa-Salcedo, T. Gonz´alez, et al. Eur. J. Phys. 36, 025008 (2015). https://doi.org/10.1088/0143-0807/36/2/025008

M. Zubair, and Abbas, Astrophys. Space Sci. 357, 154 (2015). https://doi.org/10.1007/s10509-015-2387-3

K. Das, and T. Sultana, Astrophys. Space Sci. 357, 2, 118 (2015). https://doi.org/10.1007/s10509-015-2346-z

N. Azimi, and F. Barati, Int. J. Theoret. Phys. 55, 3318 (2016). https://doi.org/10.1007/s10773-016-2961-7

D.R.K. Reddy, Y. Aditya et al., Can. J. Phys. 97, 9 (2018). https://doi.org/10.1139/cjp-2018-0403

H. Hossienkhani, H. Yousefi, et al. Astrophys. Space Sci. 3653, 59 (2020). https://doi.org/10.1007/s10509-020-03771-z

W. Javed, I. Nawazish, and N. Irshad . Eur. Phys. J. C, 81, 149 (2021). https://doi.org/10.1140/epjc/s10052-020-08555-x

L.G. G´omez, Y. Rodr´ıguez, and J.P.B. Almeida, Int. J. Mod. Phys. D, 31, 2250060 (2022). https://doi.org/10.1142/S0218271822500602

W. Javed, I. Nawazish, and N Irshad, Eur. Phys. J. C, 81, 149 (2021). https://doi.org/10.1140/epjc/s10052-020-08555-x

R. Talole, et al. Romanian Astron. J. 33, 81 (2023). https://doi.org/10.59277/RoAJ.2023.1-2.06

V.K. Bhardwaj, and A.K. Yadav, arXiv:2308.02864, (2023). https://doi.org/10.48550/arXiv.2308.02864

M. Sharif, and M. Ajmal, Chinese J. Phys. 88, 706 (2024). https://doi.org/10.1016/j.cjph.2024.02.031

A.G. Ingie, and K. Srivastava, AIP Con. Proc. 3139, 090007 (2024). https://doi.org/10.1063/5.0224769

C.B. Collins, et al. Gen. Relativ. Gravit. 12, 805 (1980). https://doi.org/10.1007/BF00763057

A. De, M. Sanjay, et al. Eur. Phys. J. C, 82, 72 (2022). https://doi.org/10.1140/epjc/s10052-022-10021-9

O. Bertolami, F. Gil Pedro, et al. Phys. Lett. B, 654, 165 (2007). https://doi.org/10.1016/j.physletb.2007.08.046

L.L. Honorez, et al. JCAP, 09, 029 (2010). https://doi.org/10.1088/1475-7516/2010/09/029

H. Kim, H.W. Lee, and Y.S. Myung, Phys. Lett. B, 632, 605 (2006). https://doi.org/10.1016/j.physletb.2005.11.043

L. Amendola, Phys. Rev. D, 62, 043511 (2000). https://doi.org/10.1103/PhysRevD.62.043511

V. Sahni, and A.A. Starobinsky, Int. J. Mod. Phys. D, 15, 2105 (2006). https://doi.org/10.1142/S0218271806009704

E.J. Copeland, M. Sami, et al. Int. J. Mod. Phys. D, 15, 1753 (2006). http://dx.doi.org/10.1142/S021827180600942X

B. Ratra, and J. Peebles, Phys. Rev. D, 37, 3406 (1988). https://doi.org/10.1103/PhysRevD.37.3406

R.R. Caldwell, R. Dave, and P.J. Steinhardt, et al. Phys. Rev. Lett. 80, 1582 (1998). https://doi.org/10.1103/PhysRevLett.80.1582

A. Sen, JHEP, 10, 008 (1999). https://doi.org/10.1088/1126-6708/1999/10/008

A. Sen, JHEP, 04, 048 (2002). https://doi.org/10.1088/1126-6708/2002/04/048

A. Sen, JHEP, 07, 065 (2002). https://doi.org/10.1088/1126-6708/2002/07/065

E.A. Bergshoeff, et al. JHEP, 05, 009 (2000). https://doi.org/10.1088/1126-6708/2000/05/009

T. Padmanabhan, Phys. Rev. D, 66, 021301(R) (2002). https://doi.org/10.1103/PhysRevD.66.021301

T. Padmanabhan, and T.R. Choudhury, Phys. Rev. D, 66, 081301(R) (2002). https://doi.org/10.1103/PhysRevD.66.081301

T. Chiba, and T. Okabe, et al. Phys. Rev. D, 62, 023511 (2000). https://doi.org/10.1103/PhysRevD.62.023511

C. Armendariz-Picon, V. Mukhanov, et al. Phys. Rev. Lett. 85, 4438 (2000). https://doi.org/10.1103/PhysRevLett.85.4438

C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhard, Phys. Rev. D, 63, 103510 (2001). https://doi.org/10.1103/PhysRevD.63.103510

C. Armendariz-Picon, T. Damour, et al. Phys. Lett. B, 458, 209 (1999). https://doi.org/10.1016/S0370-2693(99)00603-6

J. Garriga, and V. Mukhanov, Phys. Lett. B, 458, 219 (1999). https://doi.org/10.1016/S0370-2693(99)00602-4

Published
2025-12-08
Cited
How to Cite
Prasuna, P. J., Chinnappalanaidu, T., Satyanarayana, G., Raju, N. K. M., Navya, K., & Sobhanbabu, Y. (2025). Modified QCD Ghost Scalar Field Dark Energy in Anisotropic and Interacting Universe Models. East European Journal of Physics, (4), 42-52. https://doi.org/10.26565/2312-4334-2025-4-04