Cosmological Dynamics of Anisotropic Kaniadakis Holographic Dark Energy Model in Brans-Dicke Gravity

  • A. Vijaya Prasanthi AU Trans-Disciplinary Research Hub, Andhra University, Visakhapatnam, India; Department of Mathematics, Sri Vishnu Engineering College for Women, Bhimavaram, India https://orcid.org/0000-0002-4608-900X
  • G. Suryanarayana Department of Mathematics, ANITS, Visakhapatnam, India https://orcid.org/0000-0002-4866-4020
  • Y. Aditya Department of Mathematics, GMR Institute of Technology, Rajam, India https://orcid.org/0000-0002-5468-9697
  • U.Y. Divya Prasanthi Department of Statistics & Mathematics, College of Horticulture, Dr. Y.S.R. Horticultural University, Parvathipuram, India https://orcid.org/0009-0004-5397-050X
Keywords: Scalar-tensor theory, Scalar field, Holographic dark energy, Kantowski-Sachs model

Abstract

The present study examines the Kaniadakis holographic dark energy in the context of the Brans-Dicke scalar-tensor theory of gravity (Phys. Rev. 124: 925, 1961). This paper focuses on a background with an anisotropic Kantowski-Sachs space-time that is homogeneous in space. Under these circumstances, the Brans-Dicke scalar field denoted as ϕ is used as a function of the average scale factor a(t). Using a graphical model to analyze the model's physical behaviour is part of the inquiry into the Universe's accelerating expansion. We evaluate the cosmological parameters such as the scalar field, the equation of state parameter and the deceleration parameter. Furthermore, the models' stability is assessed through the application of the squared sound speed (ν2S). For our models, we derive the widely accepted cosmic planes such as ωkde-ω'kde and statefinder (r,s) planes. It is found that the scalar field is a decreasing function of cosmic time and hence the corresponding kinetic energy increases. The deceleration parameter exhibits accelerated expansion of the universe. It is mentioned here that the equation of state parameter lies in the phantom region and finally attains the ΛCDM model. Also, the ωkde-ω'kde plane provides freezing and thawing regions. In addition, the statefinder plane also corresponds to the ΛCDM model. Finally, it is remarked that all the above constraints of the cosmological parameters show consistency with Planck observational data.

Downloads

Download data is not yet available.

References

S. Perlmutter, et al., “Measurements of and from 42 high-redshift supernovae,” Astrophysical Journal, 517, 565-586 (1999). https://doi.org/10.1086/307221

A.G. Riess, et al., « Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499

R.R. Caldwell, “A Phantom Menace? Cosmological consequences of a dark energy component with the super-negative equation of state,” Phys. Lett. B, 545, 23-29 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3

T. Padmanabhan, “Dark Energy and Gravity,” Gen. Relativ. Gravit. 40, 529-564 (2008). https://doi.org/10.1007/s10714-007-0555-7

M.V. Santhi, et al., “Anisotropic generalized ghost pilgrim dark energy model in general relativity,” Int. J. Theor. Phys. 56, 362 371 (2017). https://doi.org/10.1007/s10773-016-3175-8

M. Li, “A Model of Holographic Dark Energy,” Phys. Lett. B, 603, 1-5 (2004). https://doi.org/10.1016/j.physletb.2004.10.014

A. Cohen, D. Kaplan, and A. Nelson, “Effective Field Theory, Black Holes, and the Cosmological Constant,” Phys. Rev. Lett. 82, 4971 (1999).

Z.K. Gao, et al., “Two-field quintom models in the ω-ω^' plane,” Phys. Rev. D, 74, 127304 (2006). https://doi.org/10.1103/PhysRevD.74.127304

L. Xu, and Y. Wang, “Observational constraints to Ricci dark energy model by using: SN, BAO, OHD, and fgas data sets,” J. Cosmol. Astropart. Phys. 06, 002 (2010). https://doi.org/10.1088/1475-7516/2010/06/002

S. Nojiri, and S.D. Odintsov, “Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy,” Gen. Rel. Grav. 38, 1285-1304 (2006). https://doi.org/10.1007/s10714-006-0301-6

S. Ghaffari, “Holographic dark energy model in the DGP braneworld with time-varying holographic parameters,” New Astronomy, 67, 76-84 (2019). https://doi.org/10.1016/j.newast.2018.09.002

Y. Aditya, and D.R.K. Reddy, “FRW type Kaluza-Klein modified holographic Ricci dark energy models in Brans-Dicke theory of gravitation,” Eur. Phys. J. C, 78, 619 (2018). https://doi.org/10.1140/epjc/s10052-018-6074-8

E.M.C. Abreu, J.A. Neto, A.C.R. Mendes, A. Bonilla, and R.M. de Paula, “Cosmological considerations in Kaniadakis statistics,” Europhysics Letters, 124(3), 30003 (2018). https://doi.org/10.1209/0295-5075/124/30003

H. Moradpour, A.H. Ziaie, and M.K. Zangeneh, “Generalized entropies and corresponding holographic dark energy models,” Eur. Phys. J. C, 80, 732 (2020). https://doi.org/10.1140/epjc/s10052-020-8307-x

A. Jawad, and A.M. Sultan, “Cosmic Consequences of Kaniadakis and Generalized Tsallis Holographic Dark Energy Models in the Fractal Universe,” Adv. High Energy Phys. 2021, 5519028 (2021). https://doi.org/10.1155/2021/5519028

J. Sadeghi, S.N. Gashti, and T. Azizi “Tsallis and Kaniadakis holographic dark energy with Complex Quintessence theory in Brans-Dicke cosmology,” (2022). https://doi.org/10.48550/arXiv.2203.04375

M. Tavayef, A. Sheykhi, K. Bamba, and H. Moradpour, “Tsallis holographic dark energy in the Brans-Dicke theory with a logarithmic scalar field,” Phys. Lett. B, 781, 195 (2018). https://doi.org/10.1016/j.physletb.2018.04.001

C. Tsallis, and L.J.L. Cirto, “Black hole thermodynamical entropy,” Eur. Phys. J. C, 73, 2487 (2013). https://doi.org/10.1140/epjc/s10052-013-2487-6

A.S. Jahromi, et al., “Generalized entropy formalism and a new holographic dark energy model,” Phys. Lett. B, 780, 21-24 (2018). https://doi.org/10.1016/j.physletb.2018.02.052

M. Younas, et al., “Cosmological Implications of the Generalized Entropy Based Holographic Dark Energy Models in Dynamical Chern-Simons Modified Gravity,” Advances in High Energy Physics, 2019, 1287932 (2019). https://doi.org/10.1155/2019/1287932

Y. Aditya, S. Mandal, P.K. Sahoo, and D.R.K. Reddy, “Observational constraint on interacting Tsallis holographic dark energy in logarithmic Brans-Dicke theory,” Eur. Phys. J. C, 79, 1020 (2019). https://doi.org/10.1140/epjc/s10052-019-7534-5

U.Y. Divya Prasanthi, and Y. Aditya, “Anisotropic Renyi holographic dark energy models in general relativity,” Results of Physics, 17, 103101 (2020). https://doi.org/10.1016/j.rinp.2020.103101

U.Y. Divya Prasanthi, and Y. Aditya, “Observational constraints on Renyi holographic dark energy in Kantowski-Sachs universe,” Physics of the Dark Universe, 31, 100782 (2021). https://doi.org/10.1016/j.dark.2021.100782

U.K. Sharma, and V.C. Dubey, “Exploring the Sharma–Mittal HDE models with different diagnostic tools,” The European Physical Journal Plus, 135, 391 (2020). https://doi.org/10.1140/epjp/s13360-020-00411-x

CBrans, and R.H. Dicke, “Mach’s Principle and a Relativistic Theory of Gravitation,” Phys. Rev. 124, 925 (1961). https://doi.org/10.1103/PhysRev.124.925

K.S. Thorne, “Primordial Element Formation, Primordial Magnetic Fields, and the Isotropy of the Universe,” Astrophysical Journal, 148, 51 (1967). http://dx.doi.org/10.1086/149127

C.B. Collins, E.N. Glass, and D.A. Wilkinson, “Exact spatially homogeneous cosmologies,” Gen. Relativ. Gravit. 12, 805 (1980). https://doi.org/10.1007/BF00763057

V.B. Johri, and R. Sudharsan, “BD-FRW Cosmology with Bulk Viscosity,” Australian Journal of Physics, 42(2), 215-222 (1989). https://doi.org/10.1071/PH890215

V.B. Johri, and K. Desikan, “Cosmological models with constant deceleration parameter in Brans-Dicke theory,” Gen. Relat. Gravit. 26, 1217-1232 (1994). https://doi.org/10.1007/BF02106714

Y. Aditya, and D.R.K. Reddy, “Dynamics of perfect fluid cosmological model in the presence of massive scalar field in f(R,T) gravity,” Astrophys. Space Sci. 364, 3 (2019). https://doi.org/10.1007/s10509-018-3491-y

N. Aghanim, et al., [Plancks Collaboration], (2018). https://doi.org/10.48550/arXiv.1807.06209

R. Caldwell, and E.V. Linder, “Limits of quintessence,” Phys. Rev. Lett. 95, 141301 (2005). https://doi.org/10.1103/PhysRevLett.95.141301

T. Chiba, “ω and ω^' of scalar field models of dark energy,” Phys. Rev. D, 73, 063501 (2006). https://doi.org/10.1103/PhysRevD.73.063501

V. Sahni, T. D. Saini, A.A. Starobinsky, and U. Alam, “Statefinder – A new geometrical diagnostic of dark energy,” J. Exp. Theor. Phys. Lett. 77, 201-206 (2003). https://doi.org/10.1134/1.1574831

V.U.M. Rao, and U.Y.D. Prasanthi, “Bianchi type-I and-III modified holographic Ricci Dark energy models in Saez-Ballester theory,” The European Physical Journal Plus, 132, 64-73 (2017). https://doi.org/10.1140/epjp/i2017-11328-9

V.U.M. Rao, U.Y. Divya Prasanthi, and Y. Aditya, “Plane symmetric modified holographic Ricci dark energy model in Saez-Ballester theory of gravitation,” Results in Physics, 10, 469-475 (2018). https://doi.org/10.1016/j.rinp.2018.06.027

E. Sadri, and B. Vakili, “A new holographic dark energy model in Brans-Dicke theory with a logarithmic scalar field,” Astrophysics and Space Science, 363, 13-21 (2018). https://doi.org/10.1007/s10509-017-3237-2

Y. Aditya, and D.R.K. Reddy, “Anisotropic new holographic dark energy model in Saez–Ballester theory of gravitation,” Astrophys. Space Sci. 363, 207 (2018). https://doi.org/10.1007/s10509-018-3429-4

U.Y.D. Prasanthi, and Y. Aditya, “Anisotropic Renyi holographic dark energy models in general relativity,” Results in Physics, 17, 103101 (2020). https://doi.org/10.1016/j.rinp.2020.103101

R.L. Naidu, Y. Aditya, K.D. Raju, T. Vinutha, and D.R.K. Reddy, “Kaluza-Klein FRW dark energy models in Saez-Ballester theory of gravitation,” New Astronomy, 85, 101564 (2021). https://doi.org/10.1016/j.newast.2020.101564

Y. Aditya, “Dynamics of anisotropic Renyi holographic dark energy model,” Bulgarian Astronomical Journal, 40, 95-114 (2024). https://astro.bas.bg/AIJ/issues/n40/YAditya.pdf

Y. Aditya, and U.Y.D. Prasanthi, “Dynamics of Sharma-Mittal holographic dark energy model in Brans-Dicke theory of gravity,” Bulgarian Astronomical Journal, 38, 52-67 (2023). https://astro.bas.bg/AIJ/issues/n38/YAditya.pdf

K. Dasunaidu, et al., “Kaluza-Klein FRW Tsallis holographic dark energy model in scalar-tensor theory of gravitation,” Bulgarian Astronomical Journal, 39, 72-86 (2023). https://astro.bas.bg/AIJ/issues/n39/KDasunaidu.pdf

Published
2024-06-01
Cited
How to Cite
Prasanthi, A. V., Suryanarayana, G., Aditya, Y., & Divya Prasanthi, U. (2024). Cosmological Dynamics of Anisotropic Kaniadakis Holographic Dark Energy Model in Brans-Dicke Gravity. East European Journal of Physics, (2), 10-20. https://doi.org/10.26565/2312-4334-2024-2-01