Weakly Nonlinear Magnetic Convection in a Nonuniformly Rotating Electrically Conductive Medium Under the Action of Modulation of External Fields

  • Michael I. Kopp Institute for Single Cristals, NASU, Kharkiv, Ukraine https://orcid.org/0000-0001-7457-3272
  • Anatoly V. Tur Universite Toulouse [UPS], CNRS, Institute of Research for Astrophysics and Planetology, Toulouse, France https://orcid.org/0000-0002-3889-8130
  • Volodymyr V. Yanovsky Institute for Single Cristals, Nat. Academy of Science Ukraine, Kharkiv, Ukraine; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0003-0461-749X
Keywords: magnetorotational instability, Rayleigh-Benard convection, critical Rayleigh numbers, weakly nonlinear theory


In this paper we studied the weakly nonlinear stage of stationary convective instability in a nonuniformly rotating layer of an electrically conductive fluid in an axial uniform magnetic field under the influence of: a) temperature modulation of the layer boundaries; b) gravitational modulation; c) modulation of the magnetic field; d) modulation of the angular velocity of rotation. As a result of applying the method of perturbation theory for the small parameter of supercriticality of the stationary Rayleigh number nonlinear non-autonomous Ginzburg-Landau equations for the above types of modulation were obtaned. By utilizing the solution of the Ginzburg-Landau equation, we determined the dynamics of unsteady heat transfer for various types of modulation of external fields and for different profiles of the angular velocity of the rotation of electrically conductive fluid.


Download data is not yet available.


S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability (Oxford Uni. Press, London, 1961), p. 652.

G.Z. Gershuni, and E.M. Zhukhovitckii, Convective Stability of Incompressible Fluids (Nauka, Moscow, 1972), pp. 392 (in Russian)

A.V. Getling, Rayleigh-Benard Convection: Structures and Dynamics (URSS, Moscow, 1999), p. 235. (in Russian)

M. Lappa, Rotating thermal flows in natural and industrial processes. (A John Wiley & Sons, Ltd., Publication, 2012), pp. 544.

S. Chandrasekhar, Proc. R. Soc. Lond. A217, 306-327 (1953), https://doi.org/10.1098/rspa.1953.0065.

S. Chandrasekhar, and D.D. Elbert, Proc. R. Soc. Lond. A231, 198-210 (1955), https://doi.org/10.1098/rspa.1955.0166.

I.A. Eltayeb, Proc. R. Soc. Lond. A326, 229-254 (1972), https://doi.org/10.1098/rspa.1972.0007.

I.A. Eltayeb, J. Fluid Mech. 71(1), 161–179 (1975), https://doi.org/10.1017/S0022112075002480.

R. Avila and A. Cabello, Mathematical Problems in Engineering, 2013, 1-15 (2013), https://doi.org/10.1155/2013/236901.

E. Kurt, F.H. Busse and W. Pesch, Theoret. Comput. Fluid Dynamics, 18, 251-263 (2004), https://doi.org/10.1007/s00162-004-0132-6.

M.I. Kopp, A.V. Tour, and V.V. Yanovsky, JETP 127, 1173-1196 (2018), https://doi.org/10.1134/S106377611812018X.

M.I. Kopp, A.V. Tur, and V.V. Yanovsky, Problems of Atomic Science and Technology, 4(116), 230-234 (2018), https://arxiv.org/abs/1805.11894.

M. Kopp, A. Tur, and V. Yanovsky, East Eur. J. Phys. 1, 4-33 (2019), https://doi.org/10.26565/2312-4334-2020-1-01.

M.I. Kopp, A.V. Tur, and V.V. Yanovsky, https://arxiv.org/abs/1905.05472.

P. Vadasz, and S. Olek, Int. J. Heat Mass Transfer 41, 1417-1435 (1999), https://doi.org/10.1016/S0017-9310(97)00265-2.

V.K. Gupta, B.S. Bhadauria, I. Hasim, J. Jawdat, and A.K. Singh, Alexandria Engineering Journal, 54, 981-992 (2015), https://doi.org/10.1016/j.aej.2015.09.002.

V.K. Gupta, R. Prasad, and A.K. Singh, International Journal of Energy and Technology, 5(28), 1-9 (2013).

V.K. Gupta, and A.K. Singh, A Study of Chaos in an Anisotropic Porous Cavity, International Journal of Energy and Technology, 5 (27), 1-27 (2013).

R. Prasad, and A.K. Singh, International Journal of Applied Mathematics and Informatics, 7(3), 87-96 (2013).

J.M. Jawdat, and I. Hashim, International Journal on Advanced Science, Engineering and Technology, 2(5), 346-349 (2012), https://doi.org/10.18517/ijaseit.2.5.220.

R. Prasad, and A. K. Singh, Journal of Applied Fluid Mechanics, 9(6), 2887-2897 (2016). https://doi.org/10.29252/jafm.09.06.24811.

G. Moffat, Возбуждение магнитного поля в проводящей среде [Magnetic Field Generation in Electrically Conducting Fluids], (Mir, Moscow, 1980), pp. 343. (in Russian)

T. Rikitake, Proc. Cambridge Philos. Soc. 54, 89 (1958).

A.E. Cook, and P.H. Roberts, Proc. Cambridge Philos. Soc. 68, 547-569 (1970).

Y. Gholipour, A. Ramezani, and M. Mola, Bulletin of Electrical Engineering and Informatics, 3(4), 273-276 (2014).

Xuedi Wang, Tianyu Yang, Wei Xu, International Journal of Nonlinear Science, 14(2), 211-215 (2012).

By F. Plunian, Ph. Marty, and A. Alemany, Proc. R. Soc. Lond. A. 454, 1835-1842 (1998).

I.A. Ilyin, D.S. Noshchenko, and A.S. Perezhogin, Vestnik KRAUNC. Fiz.-Mat. Nauki 2(7), 43-45 (2013).

V.I. Potapov, Rus. J. Nonlin. Dyn. 6, 255-265 (2010).

W.V.R. Malkus, and G. Veronis, J. Fluid Mech. 4(3), 225-260 (1958), https://doi.org/10.1017/S0022112058000410.

J.K. Bhattacharjee, J. Phy. A: Math. Gen. 22(24), L1135-L1189 (1989), https://doi.org/10.1088/0305-4470/22/24/001.

J.K. Bhattacharjee, Phy. Rev. A. 41, 5491-5494 (1990), https://doi.org/10.1103/PhysRevA.41.5491.

B.S. Bhadauria, and P. Kiran, Ain Shams Eng. J. 5(4), 1287-1297 (2015), https://doi.org/10.1016/j.asej.2014.05.005.

R. Ramya, E.J. Shelin, and G.K. Sangeetha, International Journal of Mathematics Trends and Technology, 54(6), 477-484 (2018), https://doi.org/10.14445/22315373/IJMTT-V54P558

P. Kiran, Ain Shams Eng. J. 7(2), 639-651 (2016), https://doi.org/10.1016/j.asej.2015.06.005

P.G. Siddheshwar, B.S. Bhadauria, and A. Srivastava, Transp. Porous Media, 91(2), 585- 604 (2012), https://doi.org/10.1007/s11242-011-9861-3

B.S. Bhadauria, P.G. Siddheshwar, J. Kumar, and O.P. Suthar, Trans. Porous Med. 73(3), 633-647 (2012), https://doi.org/10.1007/s11242-011-9925-4

P.G. Siddheshwar, B.S. Bhadauria, Pankaj Mishra, and A.K. Srivastava, Int. J. Non Linear Mech. 47, 418-425 (2012), https://doi.org/10.1016/j.ijnonlinmec.2011.06.006.

B.S. Bhadauria, and P. Kiran, Int. J. Eng. Math. 1, 2014 (2014), https://doi.org/10.1155/2014/296216.

B.S. Bhadauria, and P. Kiran, Transp. Porous Media. 100, 279-295 (2013), https://doi.org/10.1007/s11242-013-0216-0.

B.S. Bhadauria, and P. Kiran, Phys. Scr. 89(9), 095209 (2014), https://doi.org/10.1088/0031-8949/89/9/095209.

S. Aniss, M. Belhaq, and M. Souhar, J. Heat Transfer, 123(3), 428-433 (2001), https://doi.org/10.1115/1.1370501.

B.J. Geurts, and R. Kunnen, International Journal of Heat and Fluid Flow, 49, 62-68 (2014).

S.D. Alessio, and K. Ogden, WIT Transactions on Engineering Sciences, 74, 453-463 (2012).

G. Venezian, J. Fluid Mech. 35, 243-254 (1969).

P. Goldreich, and D. Lynden-Bell, Mon. Not. R. Astron. Soc. 130 (2), 125-158 (1965), https://doi.org/10.1093/mnras/130.2.125.

E. Knobloch, and K. Jullien, Physics of Fluids, 17(9), 094106 (2005), https://doi.org/10.1063/1.2047592.

R. Haberman, Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 4th ed. (Pearson/Prentice Hall, N.J., 2004), p. 769.

O.N. Kirillov, F. Stefani, and Y. Fukumoto, J. Fluid Mech. 760, 591- 633 (2014), https://doi.org/10.1017/jfm.2014.614.

R.J. Donnelly. Proc. R. Soc. Lond. Ser. A281, 130139 (1964).

Jin-Qiang Zhong, Sebastian Sterl, and Hui-Min Li, J. Fluid Mech. 778, R4 (2015).

0 article
How to Cite
Kopp, M., Tur, A., & Yanovsky, V. (2020). Weakly Nonlinear Magnetic Convection in a Nonuniformly Rotating Electrically Conductive Medium Under the Action of Modulation of External Fields. East European Journal of Physics, (2), 5-37. https://doi.org/10.26565/2312-4334-2020-2-01