Ignition and Burning Modes of DC Hollow Cathode Discharge

  • Valeriy Lisovskiy V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-6339-4516
  • I. Bogodielnyi Scientific Center of Physical Technologies, Kharkov, Ukraine
Keywords: DC glow discharge, hollow cathode, discharge ignition, radial structure, burning modes


In this paper, we measured the breakdown curves of a dc glow discharge with hollow cathode and flat electrodes. It is shown that at low gas pressure (p ≤ 0.05 Torr), the left branches of the breakdown curves for the hollow cathode and the flat electrodes are identical. At high gas pressures (p ³ 0.3 Torr), the right branch of the breakdown curve of the discharge with a hollow cathode is close to the breakdown curve for the distance between the plane electrodes, equal to the gap between the edge of the plates of the hollow cathode and flat anode. Current-voltage characteristics of the hollow cathode discharge were measured. It is shown that with low gas pressure p < 0.1 Torr discharge is in the high-voltage (electron beam) form with ascending current-voltage characteristic, when secondary electrons are accelerated along electric field lines and form an electron beam. In the gas pressure range p ≥ 0.1 Torr the discharge at low current burns in the glow mode, in which the discharge glow is practically absent in the cavity between the plates of the cathode, and the current-voltage characteristic of the discharge is ascending. At higher current the discharge goes into the hollow cathode mode, filling the space between the plates, and it has an almost vertical current-voltage characteristic. The transition from a glow discharge mode into a hollow one possesses a hysteresis. At gas pressures p ~ 1 Torr the hollow cathode effect disappears, since the thickness of the cathode layer is small compared with the gap between the plates of the cathode. It is shown that when the collectors are placed on the anode across the gap between the plates of the hollow cathode, the radial profile of the electron current to the anode in the mode of electron beam has a sharp maximum at the axis of the discharge chamber. The profile is flatter if the chain of collectors on the anode is directed along the cavity of the cathode. Increasing the gas pressure leads to a strong scattering of the electron beam, and the radial profiles of electron current to the anode are approximately the same in both transverse directions in the glow mode as well as in the hollow cathode one.


Download data is not yet available.


Москалев Б.И. Разряд с полым катодом. – М.: Энергия. – 1969. – 184 с.

Энциклопедия низкотемпературной плазмы. Вводный том 2, под ред. Фортова В.Е. – М.: Наука. – 2000 – 634 с.

Райзер Ю.П. Физика газового разряда. – М.: Наука. – 1987. – 592 c.

Donko Z., Rozsa K., Tobin R.C. Monte Carlo analysis of the electrons motion in a segmented hollow cathode discharge // J. Phys. D: Appl. Phys. – 1996. – Vol.29, No.1. – p. 105-114.

Donko Z., Apai P., Szalai L., Rozsa K., Tobin R.C. The segmented hollow cathode discharge: A pumping source for UV metal ion lasers // IEEE Trans. Plasma Sci. – 1996. – Vol.24, No.1. – p. 33-34.

Donko Z., Szalai L., Rozsa K. High-gain ultraviolet Cu-II lasers in a segmented hollow cathode discharge // IEEE J. Quantum Electronics. – 1998. – Vol.34, No.1. – p. 47-53.

Donko Z., Rozsa K., Szalai L. High-voltage hollow cathode discharges: Laser applications and simulations of electron motion // Plasma Physics Reports. – 1998. – Vol.24, No.7. – p. 588-598.

Bano G., Szalai L., Kutasi K., Hartmann P., Donko Z., Rozsa K., Kiss A., Adamowicz T.M. Operation characteristics of the Au-II 690-nm laser transition in a segmented hollow-cathode discharge // Appl. Phys. B. – 2000. – Vol.70. – p. 521-525.

El-Habachi A., Schoenbach K.H., Generation of intense excimer radiation from high-pressure hollow cathode discharges // Appl. Phys. Lett. - 1998. – Vol.73, No.7. – p. 885-887.

Mihailova D., Grozeva M., Hagelaar G.J.M., van Dijk J., Brok W.J.M., van der Mullen J.J.A.M. A flexible platform for simulations of sputtering hollow cathode discharges for laser applications // J. Phys. D: Appl. Phys. – 2008. – Vol.41, No.24. – P. 245202 (10pp).

Hagelaar G.J.M., Mihailova D.B., van Dijk J., Analytical model of a longitudinal hollow cathode discharge // J. Phys. D: Appl. Phys. – 2010. – Vol.43. – P. 465204 (11pp).

Baggio-Scheid V.H., Neri J.W., de Vasconcelos G., Atomic emission spectroscopy of a hollow cathode discharge used for deposition applications // Surface and Coatings Technology. – 2001. – Vol.146 – 147. – p. 469–473.

Barankova H., Bardos L., Hollow cathode plasma sources for large area surface treatment // Surface and Coatings Technology. – 2001. – Vol.146 – 147. – p. 486–490.

Kozec D., Engemann J., Mildner M., Theirich N.B., Multi-jet hollow cathode discharge for remote polymer deposition // Surface and Coatings Technology. – 1997. – Vol.93. – p. 128–133.

Chen Y.M., Yu G.P., Huang J.H., Role of process parameters in the texture evolution of TiN films deposited by hollow cathode discharge ion plating // Surface and Coatings Technology. – 2001. – Vol.141. – p. 156–163.

Gavrilov N.V., Mesyats G.A., Radkovski G.V., Bersenev V.V., Development of technological sources of gas ions on the basis of hollow-cathode glow discharges // Surface and Coatings Technology. – 1997. – Vol.96 – p. 81–88.

Gleizer J. Z., Krokhmal A., Krasik Ya. E., and Felsteiner J., High-current electron beam generation by a pulsed hollow cathode // J. Appl. Phys. – 2002. – Vol. 91, No.5. – p. 3431-3443.

Kutasi K., Donko Z., Hybrid model of a plane-parallel hollow-cathode discharge // J. Phys. D: Appl. Phys. – 2000. – Vol.33, No.9. – p. 1081-1089.

Кириченко В.И., Ткаченко В.М., Тютюнник В.Б., Влияние геометрических размеров, материала катода и рода газа на область оптимальных давлений тлеющего разряда с цилиндрическим полым катодом // ЖТФ. – 1976. – Т.46, No.9. – с. 1857-1867.

Bazhenov V.Yu., Ryabtsev A.V., Soloshenko I.A., Terentyeva A.G., Tsiolko V.V., Shchedrin A.I. Investigation of the electron distribution function in the glow discharge with hollow cathode // Proc. 15th Intern. Symp. on Plasma Chemistry, 2001, Orleans, France, Vol.3, p. 879-884.

Rusinov I.M., Blagoev A.B. Influence of hydrogen on the sputtered atoms' transport in a cylindrical hollow cathode // Vacuum. – 2000. – Vol.58. – p. 256–262.

Guseva L.G. Discharge striking in non-uniform fields at low gas pressures. In “Investigations into electrical discharges in gases”, Ed. by Klyarfeld B.N. – Oxford: Pergamon press. – 1964 – 12 - 35 с.

Eichhorn H., Schoenbach K.H., Tessnow T. Paschen’s law for a hollow cathode discharge // Appl. Phys. Lett. – 1993. – Vol.63, No.18. – p. 2481-2483.

Popovici C., Somesan M. Electrostatic field distribution and breakdown potential for a hollow-electrode system in rare gases // International Journal of Electronics. – 1965. – Vol.18, No.3. – p. 255-267.

Pak H., Kushner M.J., Breakdown characteristics in nonplanar geometries and hollow cathode pseudospark switches // J. Appl. Phys. – 1992. – Vol.71, No.1. – p. 94-100.

How to Cite
Lisovskiy, V., & Bogodielnyi, I. (2012). Ignition and Burning Modes of DC Hollow Cathode Discharge. East European Journal of Physics, (1025(4), 43-53. Retrieved from https://periodicals.karazin.ua/eejp/article/view/13588