Mathematical models for estimate of the ecological consequences of the impact of the pyrogenic factor on forest ecosystems

Keywords: mathematical model, forest fire, combustion parameters, fire intensity classification

Abstract

There is a need for the development of simple analytical mathematical models of the burning of large forest areas, necessary for the assessment of the ecological consequences of the impact of the pyrogenic factor.

Purpose. Develop mathematical models describing the spread of large-scale forest fires aimed at estimate the ecological consequences of the impact of the pyrogenic factor.

Methods. Analytical review of research on the problem, theoretical and computational, mathematical modeling.

Results. The results of the main parameters analysis of large forest areas combustion are presented. These include the area covered by the fire, the duration of the fire, the burnout time, the specific mass of combustible materials, the energy and power of combustion, the specific calorific value, the intensity of combustion, the movement speed of the combustion front, the influx of combustible materials, etc. Simple analytical mathematical models of large forest areas combustion have been established. These include the following models: a model with a constant growth rate of the fire area, a two-dimensional model, a model with sectorial movement of the combustion front, a model with a linear growth of the length of the combustion front, a model with a quadratic growth of the change rate of the fire area, and a generalized model. A new fire intensity classification has been proposed, containing 1–7 points from extremely low to extreme intensity. The maximum area covered by the fire (10–100 thousand km2), combustion energy (1–10 EJ) and combustion power (0.1–1 PW) have been estimated.

Conclusions. Simple analytical mathematical models of the combustion process of large forest surface areas, which are necessary for quantitative assessment of the ecological consequences of fires, have been developed.

Downloads

Download data is not yet available.

Author Biographies

L. F. Chernogor, V. N. Karazin Kharkiv National University, 4, Svobody Sqr., 61022, Kharkiv, Ukraine

DSc (Physics and Mathematics), Prof., Head of the Department of Space Radio Physics

A. N. Nekos, V. N. Karazin Kharkiv National University, 6, Svobody Sqr., 61022, Kharkiv, Ukraine

DSc (Geography), Prof., Head of the Department of Environmental Safety and Environmental Education

G. V. Titenko , V. N. Karazin Kharkiv National University, 6, Svobody Sqr., 61022, Kharkiv, Ukraine

PhD (Geography), Head of Karazin Institute of Environmental Sciences

       

L. L. Chornohor , V. N. Karazin Kharkiv National University, 6, Svobody Sqr., 61022, Kharkiv, Ukraine

Student of Karazin Institute of Environmental Sciences

References

Randerson J.T., Chen Y., van der Werf G.R., Rogers B.M., & Morton D.C. (2012). Global burned area and biomass burning emissions from small fires. J. Geophys. Res., 117(G4). id:G04012. https://doi.org/10.1029/2012JG002128

Khodakov V.E., & Zharikova M.V. (2011). Forest fires: research methods. Kherson: Grin D. S. (in Rus-sian).

Drysdale D. (2011). An Introduction to Fire Dynamics, (3rd ed.). Wiley. https://doi.org/10.1002/9781119975465

Buts Y.V. (2018). Systematization of processes of pyrogenic relaxation ecogeosystem in the conditions of technogenic load. Ecological safety, 1(25), 7–12. https://doi.org/10.30929/2073-5057.2018.1.7-12

Vacchiano G., Foderi C., Berretti R., Marchi E., & Motta R. (2018). Modeling anthropogenic and natural fireignitions in an inner-alpine valley. Natural Hazards and Earth System Sciences, 18(3), 935–948. https://doi.org/10.5194/nhess-18-935-2018

Krainiuk O.V., Buts Y.V., & Nekos А.N. (2019). Natural fire in the Rivne wildlife sanctuary and its anal-ysis. Proceedings Int. Sci. & Pract. Conf. VinSmartEco (pp. 25–26). Vinnytsia,

Buts Y., Asotskyi V., Kraynyuk O., & Ponomarenko R. (2019). Dynamics of migration capacity of some trace metals in soils in the Kharkiv region under the pyrogenic factor. Journ. Geol. Geograph. Geoe-cology, (28(3), 409–416. https://doi.org/10.15421/111938

Buts, Yu. V. (2021). Scientific and methodological bases of relaxation of ecogeosystems under the tech-nogenic loading of pyrogenic origin: Doctor’s thesis. Sumy: Sumy State University. Retrieved from https://essuir.sumdu.edu.ua/handle/123456789/76266 (In Ukrainian)

Adámek M., Jankovská Z., Hadincová V., Kula E., & Wild J. (2018). Drivers of forest fire occurrence in the cultural landscape of Central Europe. Landscape Ecology, 33(11), 2031–2045. https://doi.org/10.1007/s10980-018-0712-2

Hebert-Dufresne L., Pellegrini A.F.A., Bhat U., & Redner S. (2018). Edge fires drive the shape and sta-bility of tropical forests. Ecology letters, (6), 794–803. https://doi.org/10.1111/ele.12942

Rodríguez Trejo D.A., Martínez Muñoz P., & Martínez Lara P.J. (2019). Fire effects on the trees of a tropical pine forest and a tropical dry forest at Villaflores, Chiapas, Mexico. Ciência Florestal, 29(3),1033–1047. https://doi.org/10.5902/1980509833952

Zhang G., Wang M., & Liu K. (2019). Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. International Journal of Disaster Risk Science, 10(3), 386–403. https://doi.org/10.1007/s13753-019-00233-1

McLauchlan K.K., Higuera P.E., Miesel J., Rogers B.M., Schweitzer J., Shuman J.K., Tepley A.J., Var-ner J.M., Veblen T.T., Adalsteinsson S.A., Balch J.K., Baker P., Batllori E., Bigio E., Brando P., Cattau M., Chipman M.L., Coen J., Crandall R., Daniels L., Enright N., Gross W.S., Harvey B.J., Hat-ten J.A., Hermann S., Hewitt R.E., Kobziar L.N., Landesmann J.B., Loranty M. M., Maezumi S.Y., Mearns L., Moritz M., Myers J.A., Pausas J.G., Pellegrini A.F.A., Platt W.J., Roozeboom J., Safford H., Santos F., Scheller R.M., Sherriff R.L., Smith K.G., Smith M.D., & Watts A.C. (2020). Fire as a funda-mental ecological process: Research advances and frontiers. Journal of Ecology, 108(5), 2047–2069. https://doi.org/10.1111/1365-2745.13403

Kelly A.J., Hodges K.E. (2020). Post-fire salvage logging reduces snowshoe hare and red squirrel den-sities in early seral stages. Forest Ecology and Management, 473, id: 118272. https://doi.org/10.1016/j.foreco.2020.118272

Coogan S.C., Daniels L.D., Boychuk D., Burton P.J., Flannigan M.D., Gauthier S., Kafka V., Park J.S., Wotton B.M. (2021). Fifty years of wildland fire science in Canada. Canadian Journal of Forest Re-search, 51(2), 283–302. https://doi.org/10.1139/cjfr-2020-0314

Turner M.G., Braziunas K.H., Hansen W.D., Hoecker T.J., Rammer W., Ratajczak Z., Westerling A.L., &Seidl R. (2022). The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire. Ecological Monographs, 92(1), id: e01485. https://doi.org/10.1002/ecm.1485

Holuša J., Koreň M., Berčák R., Resnerová K., Trombik J., Vaněk J., Szczygieł R., & Chromek I. (2021). A simple model indicates that there are sufficient water supply points for fighting forest fires in the Czech Republic. International journal of wildland fire, 30(6), 428–439. https://doi.org/10.1071/WF20103

Wilson N., Bradstock R., & Bedward M. (2021). Detecting the effects of logging and wildfire on forest fuel structure using terrestrial laser scanning (TLS). Forest Ecology and Management, 488. id: 119037. https://doi.org/10.1016/j.foreco.2021.119037

Chernogor, L. F., Nekos, A. N., Titenko, G. V., & Chornohor, L. L. (2021). Ecological consequences from forest burning in the Northern hemi-sphere in 2020: Results of modeling and quantitative calcula-tions. Visnyk of V. N. Karazin Kharkiv National University, Series «Еcоlogy», (25), 42-54. https://doi.org/10.26565/1992-4259-2022-26-04 (in Ukrainian)

Chernogor, L. F., Nekos, A. N., Titenko, G. V., & Chornohor, L. L. (2022). Simulation of large-scale forest fire parameters. Visnyk of V. N. Karazin Kharkiv National University, Series «Еcоlogy», (26), 43-54. https://doi.org/10.26565/1992-4259-2022-26-04 (in Ukrainian)

Marshall V. C. (1987). Major Chemical Hazards. Chichester, U.K.: Ellis Horwood.

Published
2022-11-25
How to Cite
Chernogor, L. F., Nekos, A. N., Titenko , G. V., & Chornohor , L. L. (2022). Mathematical models for estimate of the ecological consequences of the impact of the pyrogenic factor on forest ecosystems. Visnyk of V. N. Karazin Kharkiv National University. Series Еcоlogy, (27), 51-62. https://doi.org/10.26565/1992-4259-2022-27-04