Редокс-взаємодія з амінокислотою цистеїном як один з можливих механізмів біологічної дії метиленового синього
Анотація
Одним з актуальних напрямів досліджень, пов’язаних із розробкою засобів боротьби з нейродегенеративними захворюваннями, є пошук речовин-інгібіторів агрегації певних білків, яка порушує функціонування нервових клітин. В межах молекулярно-біофізичної проблеми встановлення молекулярних механізмів дії фармакологічних препаратів, на модельній системі in vitro проведено дослідження редокс-взаємодій метиленового синього, як перспективного препарату для запобігання хвороби Альцгеймера, з його потенційною мішенню – амінокислотою цистеїном, що входить до складу активної ділянки Тау-білків. За допомогою вторинно-емісійної мас-спектрометричної методики ідентифіковано єдиний продукт прямого окислення цистеїну метиленовим синім – цистин, що утворюється шляхом формування дисульфідного містка між двома молекулами цистеїну. Ймовірно, що подібна модифікація залишків цистеїну в складі Тау-білків змінює їх структуру, що може запобігати їх наступній агрегації. Кисеньвмісні продукти окислення цистеїну не виявлено. Показано, що відновлення метиленового синього у ході реакції переводить його у лейко-форму, котра також розглядається як агент в терапії нейродегенеративних захворювань.
Завантаження
Посилання
Alzheimer: 100 Years and Beyond / M. Jucker, K. Beyreuther, C. Haass, R. Nitsch, Y. Christen (Eds.) – Berlin: Springer, 2006. – 543 p.
Alzheimer disease research in the 21st century: past and current failures, new perspectives and funding priorities / F. Pistollato, E.L. Ohayon, A. Lam [et al.] // Oncotarget. – 2016. – V. 7, N 26. – P. 38999–39016.
2017 Alzheimer's disease facts and figures (Alzheimer’s Association Report) // Alzheimer’s & Dementia. – 2017. – V. 13, N 4. – P. 325–373.
Changing the trajectory of Alzheimer’s disease: How a treatment by 2025 saves lives and dollars (Alzheimer’s Association Report) – Mode of access: WWW.URL: http://alz.org/documents_custom/ALZ_Trajectory2015_ FINAL_01.27.15.pdf – Last access: May 26, 2017. – Title from the screen.
The Journal of Alzheimer's Disease Mode of access: WWW.URL: http://www.j-alz.com/ – Last access: May 26, 2017. – Title from the screen.
Site: Alzheimer’s Association – Mode of access: WWW.URL: http://www.alz.org/ – Last access: May 26, 2017. – Title from the screen.
Selkoe D.J. The molecular pathology of Alzheimer's disease / D.J. Selkoe // Neuron. – 1991. – V. 6, N 4. – P. 487–498.
Tatrnikova O.G. Beta-amyloid I Tau-belok: struktura, vzaimodeistvie i prionopodobnye svojstva / O.G. Tatarnikova, M.A. Orlov, N.V. Bobkova // Usp. biol. khim. – 2015. – T. 55. – S. 351-390.
Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies / G. Šimić, M. Babić Leko, S. Wray [et al.] // Biomolecules. – 2016. – V. 6, N 1. – Artice ID 6, 28 p.
Wischik C.M. Tau-aggregation inhibitor therapy for Alzheimer's disease / C.M. Wischik, C.R. Harrington, J.M.D. Storey // Biochem. Pharmacol. – 2014. – V. 88, N 4. – P. 529–539.
Tau agregation inhibitor therapy: An exploratory phase 2 study in mild or moderate Alzheimer’s disease / C.M. Wischik, R.T. Staff, D.J. Wischik [et al.] // J. Alzheimer's Dis. – 2015. – V. 44, N 2. – P. 705–720.
Tau-centric targets and drugs in clinical development for the treatment of Alzheimer's disease / F. Panza, V. Solfrizzi, D. Seripa [et al.] // BioMed Res. Int. – 2016. – V. 2016. – Article ID 3245935, 15 p.
Tau aggregation inhibitors: the future of Alzheimer’s pharmacotherapy? / F. Panza, D. Seripa, V. Solfrizzi [et al.] // Expert Opin. Pharmacother. – 2016. – V. 17, N 4. – P. 457–461.
Guzmán-Martinez L. Tau oligomers as potential targets for Alzheimer’s diagnosis and novel drugs / L. Guzmán-Martinez, G.A. Farías, R.B. Maccioni // Front. Neurol. – 2013. – V. 4. – Article ID 167, 6 p
Takashima A. Tau aggregation is a therapeutic target for Alzheimer's disease / A. Takashima // Curr. Alzheimer Res. – 2010. – V. 7, N 8. – P. 665–669.
Badiola N. Tau phosphorylation and aggregation as a therapeutic target in tauopathies / N. Badiola, M. Suárez-Calvet, A. Lleó // CNS Neurol. Disord.: Drug Targets. – 2010. – V. 9, N 6. – P. 727–740.
Tau Protein. Methods and Protocols / C. Smet-Nocca (Ed.) – New York: Humana Press, 2017. – 432 p.
Bakota L. Tau biology and Tau-directed therapies for Alzheimer’s disease / L. Bakota, R. Brandt // Drugs. – 2016. – V. 76, N 3. – P. 301–313.
The many faces of tau / M. Morris, S. Maeda, K. Vossel, L. Mucke // Neuron. – 2011. – V. 70, N 3. – P. 410–426.
Development of tau aggregation inhibitors for Alzheimer's disease / B. Bulic, M. Pickhardt, B. Schmidt [et al.] // Angew. Chem., Int. Ed. – 2009. – V.48, N 10. – P. 1740–1752.
Structure and mechanism of action of tau aggregation inhibitors / K. Cisek, G.L. Cooper, C.J. Huseby, J. Kuret // Curr. Alzheimer Res. – 2014. – V. 11, N 10. – P. 918–927.
Sites of tau important for aggregation populate β-structure and bind to microtubules and polyanions / M.D. Mukrasch, J. Biernat, M. von Bergen [et al.] // J. Biol. Chem. – 2005. – V. 280, N 26. – P. 24978–24986.
Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments / Schweers O., Mandelkow E.M., Biernat J., Mandelkow E. // Proc. Natl. Acad. Sci. U. S. A. – 1995. – V. 92, N 18. – P. 8463–8467.
Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation / A. Crowe, M.J. James, V.M.-Y. Lee [et al.] // J. Biol. Chem. – 2013. – V. 288, N 16. – P. 11024–11037.
Methylene blue inhibits caspases by oxidation of the catalytic cysteine / P. Pakavathkumar, G. Sharma, V. Kaushal [et al.] // Sci. Rep. – 2015. – V. 5, N 1. – Article ID 13730, 13 p.
Mechanistic basis of phenothiazine-driven inhibition of tau aggregation / E. Akoury, M. Pickhardt, M. Gajda [et al.] // Angew. Chem. Int. Ed. – 2013. – V. 52, N 12. – P. 3511–3515.
Structure and mechanism of action of tau aggregation inhibitors / K. Cisek, G.L. Cooper, C.J. Huseby, J. Kuret // Curr. Alzheimer Res. – 2014. – V. 11, N 10. – P. 918–927.
Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines / C.M. Wischik, P.C. Edwards, R.Y. Lai [et al.] // Proc. Natl. Acad. Sci. U. S. A. – 1996. – V. 93, N 20. – P. 11213–11218.
Oz M. Methylene blue and Alzheimer's disease / M. Oz, D.E. Lorke, G.A. Petroianu // Biochem. Pharmacol. – 2009. – V. 78, N 8. – P. 927–932.
Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau / K. Hochgräfe, A. Sydow, D. Matenia [et al.] // Acta Neuropathol. Commun. – 2015. – V. 3. – Article ID 25, 22 p.
Preparation and characterization of methylene blue nanoparticles for Alzheimer's disease and other tauo-pathies / U.K. Jinwal, A. Groshev, J. Zhang [et al.] // Curr. Drug Delivery – 2014. – V. 11, N 4. – P. 541–550.
Lest we forget you methylene blue... / R.H. Schirmer, H. Adler, M. Pickhardt, E. Mandelkow [et al.] // Neurobiol. Aging. – 2011. – V. 32, N 12. – P. 2325.e7–2325.e16.
Shelkovskiy V.S. Ispol’zovanie okislitelno-vosstanovitelnyh svojstv krasitelya metilenovogo sinego v nanobiofizicheskih issledovaniyah / V.S. Shelkovskiy // Biofizychnyj Visnyk. – 2015. – T. 33, N 1. – S. 5-29.
Complex disposition of methylthioninium redox forms determines efficacy in tau aggregation inhibitor therapy for Alzheimer's disease / T.C. Baddeley, J. McCaffrey, J.M. Storey [et al.] // J. Pharmacol. Exp. Ther. – 2015. –V. 352, N 1. – P.110–118.
Tau-directed approaches for the treatment of Alzheimer's disease: focus on leuco-methylthioninium / D. Seripa, V. Solfrizzi, B.P. Imbimbo [et al.] // Expert Rev. Neurother. – 2016. – V. 16, N 3. – P. 259–277.
Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models / Melis V., Magbagbeolu M., Rickard J.E. [et al.] // Behav. Pharmacol. – 2015. – V. 26, N 4. – P. 353–368.
Site: TauRx Therapeutics. Innovation in neurodegeneration – Mode of access: WWW.URL: http://taurx.com/science/ – Last access: May 26, 2017. – Title from the screen.
a) Kaltashov I.A. Mass spectrometry in biophysics: conformation and dynamics of biomolecules / I.A. Kaltashov, S.J. Eyles. – Hoboken: John Wiley, 2005. – 458 p. b) Kaltashov I.A. Mass spectrometry in structural biology and biophysics: architecture, dynamics, and interaction of biomolecules / I.A. Kaltashov, S.J. Eyles, 2nd edition – Hoboken: John Wiley, 2012. – 289 p.
Mechanistic investigation of the interaction between bisquaternary antimicrobial agents and phospholipids by liquid secondary ion mass spectrometry and differential scanning calorimetry / V.A. Pashynskaya, M.V. Kosevich, A. Gomory [et al.] // Rapid Commun. Mass Spectrom. – 2002. – V. 16, N 18. – P. 1706–1713.
Characterization of noncovalent complexes of antimalarial agents of the artemisinin-type and Fe(III)-heme by electrospray mass spectrometry and collisional activation tandem mass spectrometry / V.A. Pashynska, H. Van den Heuvel, M. Claeys, M.V. Kosevich M.V. // J. Am. Soc. Mass Spectrom. – 2004. – V. 15, N. 8. – P. 1181–1190.
Lebedev A.T. Osnovy mass-spektrometrii belkov i peptidov / A.T. Lebedev, K.A. Artemenko, T.Yu. Samgina. – M.: Tekhnosfera, 2012. 176 s.
Quantification of the brain proteome in Alzheimer's disease using multiplexed mass spectrometry / S. Musu-nuri, M. Wetterhall, M. Ingelsson [et al.] // J. Proteome Res. – 2014. – V. 13, N 4. – P. 2056–2068.
Liu Ya. Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics / Ya. Liu, H. Qing, Yu. Deng // Int. J. Mol. Sci. – 2014. – V. 15, N 5. – P. 7865–7882.
Gu L. Sample multiplexing with cysteine-selective approaches: cysDML and cPILOT / L. Gu, A.R. Evans, R.A.S. Robinson // J. Am. Soc. Mass Spectrom. – 2015. – V. 26, N 4. – P. 615–630.
Molecular mapping of Alzheimer’s disease: Imaging mass spectrometry / G. Perry, A.R. Kelley, S. Bach, R.J. Castellani // Alzheimer's Dementia. – 2015. – V. 11, N 7. – P. 545.
Imaging mass spectrometry for the research of Alzheimer’s disease / M. Ikegawa, T. Miyasaka, N. Kakuda, Ya. Ihara // J. Mass Spectrom. Soc. Jpn. – 2016. – V. 64, N 1. – P. 17–20.
Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer's disease, progressive supranuclear palsy, and dementia with Lewy bodies / N.R. Barthélemy, A. Gabelle, C. Hirtz [et al.] // J. Alzheimer's Dis. – 2016. – V. 51, N 4. – P. 1033–1043.
Identification of potential modifiers of Alzheimer’s disease pathology by quantitative mass spectrometry and drosophila genetics / B.D. Minjarez, M.L. Valero, K.G. Calderon-Gonzalez [et al.] // Alzheimer's Dementia. – 2015. – V. 11, N 7. – P. P512–P513.
Estimation of phosphorylation level of amyloid-beta isolated from human blood plasma: ultrahigh-resolution mass spectrometry / I.A. Popov, M.I. Indeikina, S.I. Pekov [et al.] // Mol. Biol. (Moscow). – 2014. – V. 48, N 4. – P. 607–614.
Becker J.S. Studies of structure and phosphorylation of tau protein using high resolution mass spectrometry / J.S. Becker, M. Przybylski // J. Anal. At. Spectrom. – 2007. – V.22., N7. P. 761-765.
Difficulties associated with the structural analysis of proteins susceptible to form aggregates: The case of Tau protein as a biomarker of Alzheimer's disease / L. Hromadkova, R. Kupcik, B. Jankovicova [et al.] // J. Sep. Science. – 2016. – V. 39, N4. – P. 799–807.
Vekey K. Chemical reactions in fast atom bombardment mass spectrometry / K. Vekey, L.F. Zerilli // Org. Mass Spectrom. – 1991. – V. 26, N 11. – P. 939–944.
Pelzer G. Oxidation-reduction processes occurring in secondary ion mass spectrometry and fast atom bombardment of glycerol solutions / G. Pelzer, E. D. Pauw, J. Marien // J. Phys. Chem. – 1984. – V. 88, N 21. – P. 5065–5068.
Ohashi Y. Unprecedented matrix-induced reduction of flavins observed under FAB and MALDI conditions / Y. Ohashi, Y. Itoh // Curr. Org. Chem. – 2003. – V. 7, N 15. – P. 1605–1611.
Reduction of organic dyes in matrix-assisted laser desorption/ionization and desorption/ ionization on porous silicon / S. Okuno, M. Nakano, G.E. Matsubayashi // Rapid Commun. Mass Spectrom. – 2004. – V. 18, N 23. – P. 2811–2817.
Asakawa D. Study on the redox reactions for organic dyes and S-nitrosylated peptide in electrospray droplet impact / D. Asakawa, K. Hiraoka // J. Mass Spectrom. – 2009. – V. 44, N 4. – P. 461–465.
Reduction of methylene blue during the ionization process / D.J. Burinsky, R.L. Dilliplane, G.C. DiDonato, K.L. Busch // Org. Mass Spectrom. – 1988. – V. 23, N 4. – P. 231–235.
Kazakoff C.W. Reduction processes in fast atom bombardment mass spectrometry: Methylene blue in glycerol-thioglycerol and glycerol-nitrobenzyl alcohol matrices / C.W. Kazakoff, R.T.B. Rye // Org. Mass Spectrom. – 1991. – V. 26, N 3. – P. 154–156.
Kosevich M.V. Boryak O.A., Chagovets V.V., Shelkovsky V.S., Pokrovskiy V.A. Interactions of biological-ly active redox-sensitive dyes with nanomaterials: mass spectrometric diagnostics // Nanobiphysics: Fundamen-tal and Applications / Ed. V.A. Karachevtsev. – Singapore: Pan Stanford Publishing. 2015. – P. 179–216.
Evaluation of the reduction of imidazophenazine dye derivatives under fast atom bombardment mass spectrometric conditions / M.V. Kosevich, O.A. Boryak, V.V. Orlov [et al.] // J. Mass Spectrom. – 2006. – V. 41, N 1. – P. 113–123.
Sensitivity of redox reactions of dyes to variations of conditions created in mass spectrometric experiments / M.V. Kosevich, V.V. Chagovets, I.V. Shmigol [et al.] // J. Mass Spectrom. – 2008. – V. 43, N 10. – P. 1402–1412.
Mass-spektrometriya s lazernoj desorbciej/ionizaciej krasitelya metilenovogo golubogo s poverhnosti mezoporistyh tonkih plenok TiO2, SiO2/TiO2 i SiO2 / T.V. Fesenko, M.V. Kosevich, N.I. Surovtseva i dr. // Mass-Spektrometria. – 2007. – T. 4, N 4. – S. 289-296.
Chemically modified porous silicon for laser desorption/ionization mass spectrometry of ionic dyes / I.V. Shmigol, S.A. Alekseev, O.Yu. Lavrynenko [et al.] // J. Mass Spectrom. – 2009. – V. 44, № 8. – P. 1234–1240.
Noncovalent interaction of methylene blue with carbon nanotubes: theoretical and mass spectrometry characterization / V.V. Chagovets, M.V. Kosevich, S.G. Stepanian [et al.] // J. Phys. Chem. C. – 2012. – V. 116, N 38. – P. 20579−20590.
Monomer/dimer dependent modulation of reduction of the cationic dye methylene blue in negatively charged nanolayers as revealed by mass spectrometry / V.S. Shelkovsky, M.V. Kosevich, O.A. Boryak [et al.] // RSC Advances. – 2014. – V. 4, N 104. – P. 60260–60269.
Terenin A.N. Fotonika molekul krasitelej i rodstvennyh organicheskih soedinenij. – L.: Nauka, 1967. – 616 s.
Optical absorption of methylene blue. [Electronic resource] // Oregon Medical Lazer Center, OMLC web site - Mode of access: http://omlc.org/spectra/mb/. – Last access: May 26, 2017. – Title from the screen.
Cenens J. Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension / J. Cenens, R.A. Schoonheydt // Clays. Clay Miner. – 1988. – V. 36, N 3. – P. 214–224.
Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(II)–halide species in acidic aqueous media / O. Impert, A. Katafias, P. Kita [et al.] // Dalton Trans. – 2003. – N 3. – P. 348–353.
de Tacconi N.R. Reversibility of photoelectrochromism at the TiO2/Methylene Blue interface / N.R. de Tacconi, J. Carmona, K. Rajeshwar // J. Eectrochem. Soc. – 1994. – V. 144, N 7. – P. 2486–2490.
Talrose V., Yermakov A.N., Usov A.A., Goncharova A.A., Leskin A.N., Messineva N.A., Trusova N.V., Efimkina M.V. UV/Visible Spectra // NIST Chemistry WebBook: NIST Standard Reference Database Number 69 / P.J. Linstrom, W.G. Mallard (Eds.); National Institute of Standards and Technology, Gaithersburg MD, 20899, (retrieved May 26, 2017).
Paradoksal’nyj vtorichno-emissionnyj mass-spektr lejkoformy kresitelya mtilenovogo sinego / M.V. Kosevich, O.A. Boryak, V.S. Shelkovskiy [et al] / VI Vseross. konf. “Mass-spektrometria i ee prikladnye problemy”, October 12-17, 2015, Moscow, RF. – 2015, S. 109.
Site: Novosti SPbGU. Disul’fidnye mostiki: ot biofoziki belkov k onkogenezu Mode of access: WWW.URL: http://spbu.ru/news-spsu/24083-disulfidnye-mostiki-ot-biofiziki-belkov-k-onkogenezu – Last access: May 26, 2017. – Title from the screen.
Origin of anti-tumor activity of the cysteine-containing GO peptides and further optimization of their cytotoxic properties / I.I. Tyuryaeva, O.G. Lyublinskaya, I.S. Podkorytov [et al.] // Sci. Rep. – 2017. – V. 7. – Article ID 40217, 18 p.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).