Реакція еритроцитів на зміну електролітного складу середовища. Iv. Вплив органічних аніонів

  • S. V. Rudenko Інститут проблем кріобіології і кріомедицини НАН України
  • L. Shi Харківський національний університет імені В.Н. Каразіна
  • V. A. Bondarenko Інститут проблем кріобіології і кріомедицини НАН України
Ключові слова: эритроциты, форма, низка іонна сила, сахароза, аніонний транспорт, органічні аніони

Анотація

Досліджено вплив органічних аніонів ацетату, оксалату, цитрату, тартрату, саліцилату та солей ЭДТА різного ступеню заміщення на послідовність зміни форми еритроцитів (морфологічної відповіді, МВ) у ізотонічному сахарозному середовищі. Встановлено, що тільки аніони оксалату і цитрату мають схожій характер впливу на різні фази МВ. Вплив останніх аніонів на характер перебігу МВ відрізняється від оксалату, а також між собою, що свідчить про спеціфічность їх впливу на форму клітин за даних умов. У протилежність до неорганічних моновалентних аніонів які стабілізували діскоїдну форму клітин при їх додаванні на фазі 2, усі органічні аніони викликали ризьку сферуляцію клітин. Отримані дані в сукупності дозволяють виключити вплив позитивного трансмембранного потенціалу та іонної сили в діапазоні до 10 мм як причинних чинників, що впливають на динамічні перетворення форми еритроцитів у неелектролітних середовищах, але не виключають можливого впливу конформації мембранних білків на ці процеси. Передбачається, що МО можна розглядати як генерализовану реакцію еритроцитів на зміну іонного оточення.

Завантаження

##plugins.generic.usageStats.noStats##

Біографії авторів

S. V. Rudenko, Інститут проблем кріобіології і кріомедицини НАН України

вул. Переяслявська 23, Харків, 61015, Україна

L. Shi, Харківський національний університет імені В.Н. Каразіна

пл. Свободи, 4, Харків, 61077, Україна

V. A. Bondarenko, Інститут проблем кріобіології і кріомедицини НАН України

вул. Переяслявська 23, Харків, 61015, Україна

Посилання

1. Bruce LJ, Beckmann R, Ribeiro ML, Peters LL, Chasis JA, Delaunay J, Mohandas N, Anstee DJ, Tanner MJ. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood 2003;101(10):4180-8.

2. Gimsa J, Ried C. Do band 3 protein conformational changes mediate shape changes of human erythrocytes? . Mol.Membr.Biol. 1995;12(3):247-54.

3. Betz T, Bakowsky U, Muller MR, Lehr CM, Bernhardt I. Conformational change of membrane proteins leads to shape changes of red blood cells. Bioelectrochemistry. 2007;70:122-6.

4. Wong P. A basis of echinocytosis and stomatocytosis in the disc-sphere transformations of the erythrocyte . J.Theor.Biol. 1999;196(3):343-61.

5. Руденко С.В., Мухамед Хани Румиех, Бондаренко В.А. Морфологическая реакция эритроцитов на изменение электролитного состава среды. II. Влияние ингибиторов анионного транспорта // Вісник Харківського національного університету імені В.Н. Каразіна. Біофізічний вісник – 2007. - Вип. 1(18).
– С. 53-60.

6. Blank ME, Hoefner DM, Diedrich DF. Morphology and volume alterations of human erythrocytes caused by the anion transporter inhibitors, DIDS and p-azidobenzylphlorizin. Biochim.Biophys.Acta 1994;1192(2):223-33.

7. Jennings ML, Adame MF. Characterization of oxalate transport by the human erythrocyte band 3 protein. J.Gen.Physiol. 1996;107(1):145-59.

8. Gunn RB, Wieth JO, Tosteson DC. Some effects of low pH on chloride exchange in human red blood cells. J.Gen.Physiol 1975;65(6):731-49.

9. Dalmark M, Wieth JO. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells . J.Physiol 1972;224(3):583-610.

10. Gunn RB, Dalmark M, Tosteson DC, Wieth JO. Characteristics of chloride transport in human red blood cells. J.Gen.Physiol 1973;61(2):185-206.

11. Jennings ML, Schulz RK, Allen M. Effects of membrane potential on electrically silent transport. Potential- independent translocation and asymmetric potential-dependent substrate binding to the red blood cell anion exchange protein. J.Gen.Physiol. 1990;96(5):991-1012.

12. Liu SQ, Law FY, Knauf PA. Effects of external pH on substrate binding and on the inward chloride translocation rate constant of band 3 (PDF)(Reprint). J.Gen.Physiol 1996;107(2):271-91.

13. Salhany JM, Gaines ED. Steady state kinetics of erythrocyte anion exchange. Evidence for site-site interactions. J.Biol.Chem. 1981;256(21):11080-5.

14. Руденко С.В., Ши Л., Бондаренко В.А. Морфологическая реакция эритроцитов на изменение электролитного состава среды. III. Влияние моновалентных анионов // Вісник Харківського національного університету імені В.Н. Каразіна. Біофізічний вісник – 2008. - Вип. 1(18). –????

15. Bernhardt I, Erdmann A, Vogel R, Glaser R. Factors involved in the increase of K+ efflux of erythrocytes in low chloride media. Biomed.Biochim.Acta 1987;46(2-3):S36-S40.

16. Sheetz MP, Singer SJ. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc.Natl.Acad.Sci.U.S.A 1974;71(11):4457-61.

17. Glaser R., Heinrich R., Gaestel M. Potential-induced shape transformation in human red blood cells (1982) Studia biophysica. V. 90, 155-156.

18. Nwafor A., Coakley W.T. Drug-induced shape change in erythrocytes correlates with membrane potential change and is independent of glycocalyx charge // Biochem. Pharmacol. – 1985. – Vol.34, №18. – Р. 3329– 3336.

19. Nwafor A., Coakley W.T. Charge-independent effects of drugs on erythrocyte morphology // Biochem. Pharmacol. – 1986. – Vol.35, №6. – Р. 953–957.

20. Rudenko, S.V., and Nipot, E.E. (1996) Protection by chlorpromazine, albumin and divalent cations of hemolysis induced by melittin, [ala-14]melittin and whole bee venom. Biochem. J. 317, N3, 747-754.

21. Glaser R. Does the transmembrane potential (Deltapsi) or the intracellular pH (pHi) control the shape of human erythrocytes? Biophys.J. 1998;75(1):569-70.

22. M.M. Gedde, D.K. Davis, W.H. Huestis, Cytoplasmic pH and human erythrocyte shape. Biophys.J. 72 (1997) 1234-1246.

23. M.M. Gedde, W.H. Huestis, Membrane potential and human erythrocyte shape. Biophys.J. 72 (1997) 1220- 1233.

24. Руденко С.В., Мухамед Хани Румиех, Бондаренко В.А. Морфологическая реакция эритроцитов на изменение электролитного состава среды. I. Влияние альбумина // Вісник Харківського національного університету імені В.Н. Каразіна. Серія: біологія – 2007. №768, Вип. 5. – С. 150-156.

25. Krupka RM. Role of substrate binding forces in exchange-only transport systems: II. Implications for the mechanism of the anion exchanger of red cells. J.Membr.Biol. 1989;109(2):159-71.

26. Deves R, Krupka RM. The binding and translocation steps in transport as related to substrate structure. A study of the choline carrier of erythrocytes. Biochim.Biophys.Acta 1979;557(2):469-85.

27. Galanter WL, Hakimian M, Labotka RJ. Structural determinants of substrate specificity of the erythrocyte anion transporter. Am.J.Physiol. 1993;265(4 Pt 1):C918-C926.

28. Ruffing W, Gartner EM, Lepke S, Legrum B, Passow H. Transport-related conformational states of the band 3 protein: probing with 1-fluoro-2,4-dinitrobenzene. Cell Mol.Biol.(Noisy.-le.-grand.) 1996;42(7):1097- 118.

29. Hoffman,J.F. On the mechanism and measurement of shape transformations of constant volume of human red blood cells Blood Cells. 1987, 12, 565-588.
Опубліковано
2009-06-05
Цитовано
Як цитувати
Rudenko, S. V., Shi, L., & Bondarenko, V. A. (2009). Реакція еритроцитів на зміну електролітного складу середовища. Iv. Вплив органічних аніонів. Біофізичний вісник, 2(23), 59-68. вилучено із https://periodicals.karazin.ua/biophysvisnyk/article/view/4365
Розділ
Біофізика клітини