Викликані лігандом конформаційні зміни ДНК в комплексах профлавіну по типу зв’язування в малому жолобку, досліджені за допомогою молекулярно-динамічного моделювання

  • K. V. Miroshnychenko Інститут радіофізики та електроніки ім. О. Я. Усикова НАН України https://orcid.org/0000-0002-2543-6519
  • A. V. Shestopalova Інститут радіофізики та електроніки ім. О. Я. Усикова НАН України; Харківський національний університет ім. В.Н. Каразіна https://orcid.org/0000-0001-7613-7212
Ключові слова: профлавин, олигонуклеотид ДНК, комплекс в малом желобке, молекулярно-динамическое моделирование, механизм индуцированного соответствия, сужение малого желобка, BI/BII переходы

Анотація

Актуальність. Зв’язування профлавіну в малому жолобку ДНК – це стадія, що обмежує швидкість реакції інтеркаляції. Вважають також, що ця стадія реакції відповідає за залежність кінетики зв’язування профлавіну з ДНК від послідовності. Більшість досліджень орієнтовані на фінальну стадію реакції – інтеркаляційний комплекс, тому бракує даних щодо структури та стабільності комплексів профлавіну в малому жолобку ДНК.

Мета роботи. Метою даного дослідження було вивчення стабільності комплексів профлавіну в малому жолобку олігонуклеотидів ДНК різної послідовності за допомогою молекулярно-динамічного моделювання та аналіз конформаційних змін ДНК, викликаних зв’язуванням профлавіну.

Матеріали та методи. Молекулярно-динамічне моделювання комплексів профлавіну з олігонуклеотидами poly(dA)·poly(dT) та poly(dCG)·poly(dCG), довжиною 30 п.о., було проведене в програмному пакеті AMBER12 з явним урахуванням води (SPC/E) та іонів (NaCl 0.15 M) з використанням силових полів FF14SB для ДНК та GAFF для ліганду. Стартові конфігурації комплексів були отримані методом докінгу в AutoDock 3.05. Після багатоетапного протоколу врівноваження, продукційна фаза моделювання для кожної системи становила 50 нс за умови T=300 К і p=1 бар. Аналіз траєкторій проводився за допомогою пакетів AMBERTools17 та VMD‑1.9.3.

Результати. Результати моделювання свідчать, що комплекси профлавіну в малому жолобку ДНК є стабільними в часовому інтервалі 50 нс, однак у порівнянні зі стартовими структурами є деякі структурні зміни. В місці зв’язування профлавіну відбувається звуження малого жолобку ДНК. Воно є більш вираженим у комплексі профлавіну з poly(dCG)·poly(dCG) і супроводжується переходами BI/BII в ДНК та переорієнтацією ліганду. В комплексі профлавіну з poly(dA)·poly(dT) утворюються специфічні міжмолекулярні водневі зв’язки, що оптимізуються через зміну параметрів опенінг та пропелер задіяних АТ-пар. Стабілізація комплексів відбувається завдяки ван-дер-ваальсовим та гідрофобним взаємодіям, що є більш вигідними в комплексі профлавіну з poly(dA)·poly(dT).

Висновки. Наші результати вказують на те, що зв’язування профлавіну в малому жолобку запускає конформаційні зміни в ДНК за механізмом індукованої відповідності, що є важливими для стабільності кінцевого комплексу.

Завантаження

##plugins.generic.usageStats.noStats##

Біографії авторів

K. V. Miroshnychenko, Інститут радіофізики та електроніки ім. О. Я. Усикова НАН України

вул. Ак. Проскури, 12, Харків, 61085, Україна

A. V. Shestopalova, Інститут радіофізики та електроніки ім. О. Я. Усикова НАН України; Харківський національний університет ім. В.Н. Каразіна

вул. Ак. Проскури, 12, Харків, 61085, Україна; пл. Свободи, 4, Харків, 61022, Україна

Посилання

Ferguson, L. R., & Denny, W. A. (1991). The genetic toxicology of acridines. Mutation Research, 258(2), 123-160. doi:10.1016/0165-1110(91)90006-H

Peacocke, A. R., & Skerrett, J. N. H. (1956). The interaction of aminoacridines with nucleic acids. Transactions of the Faraday Society, 52, 261-279. doi:10.1039/TF9565200261

Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. Journal of Molecular Biology, 3(1), 18-30. doi:10.1016/S0022-2836(61)80004-1

Luzzati, V., Masson, F., &Lerman, L. S. (1961). Interaction of DNA and proflavine: a small-angle X-ray scattering study. Journal of Molecular Biology, 3(5), 634-639. doi:10.1016/S0022-2836(61)80026-0

Lerman, L. S. (1963). The structure of the DNA-acridine complex. Biochemistry, 49(1), 94-102. doi:10.1073/pnas.49.1.94

Neville, D. M. Jr., & Davies, D. R. (1966). The interaction of acridine dyes with DNA: an X-ray diffraction and optical investigation. Journal of Molecular Biology, 17(1), 57-74. doi:10.1016/S0022-2836(66)80094-3

Neidle, S., Achari, A., Taylor, G. L., Berman, H. M., Carrell, H. L., Glusker, J. P., & Stallings, W. C. (1977). Structure of a dinucleoside phosphate-drug complex as model for nucleic acid-drug interaction. Nature, 269, 304-307. doi:10.1038/269304a0

Berman, H. M., Stallings, W., Carrell, H. L., Glusker, J. P., Neidle, S., Taylor, G., &Achari, A. (1979). Molecular and crystal structure of an intercalation complex: proflavine-cytidylyl-(3',5')-guanosine. Biopolymers, 18(10), 2405-2429. doi:10.1002/bip.1979.360181004

Shieh, H.-S., Berman, H. M., Dabrow, M., &Neidle, S. (1980). The structure of drug-deoxydinucleoside phosphate complex: generalized conformational behavior of intercalation complexes with RNA and DNA fragments. Nucleic Acids Research, 8(1), 85-97. doi:10.1093/nar/8.1.85

Maehigashi, T., Persil, O., Hud, N. V., & Williams, L.D. (2010). Crystal structure of proflavine in complex with DNA hexamer duplex. Protein Data Bank. Retrieved from: https://www.rcsb.org/structure/3FT6

Li, H. J., & Crothers, D. M. (1969). Relaxation studies of the proflavine-DNA complex: the kinetics of an intercalation reaction. Journal of Molecular Biology, 39(3), 461-477. doi:10.1016/0022-2836(69)90138-7

Ramstein, J., Dourlent, M., &Leng, M. (1972). Interaction between proflavine and deoxyribonucleic acid influence of DNA base composition. Biochemical and Biophysical Research Communications, 47(4), 874-882. doi:10.1016/0006-291X(72)90574-8

Ramstein, J., Ehrenberg, M., &Rigler, R. (1980). Fluorescence relaxation of proflavin-deoxyribonucleic acid interaction. Kinetic properties of a base-specific reaction. Biochemistry, 19(17), 3938-3948. doi:10.1021/bi00558a008

Marcandalli, B., Winzek, C., &Holzwarth, J. F. (1984). A laser temperature jump investigation of the interaction between proflavine and calf-thymus deoxyribonucleic acid at low and high ionic strength avoiding electric field effects. Berichte der Bunsengesellschaft fur PhysikalischeChemie, 88(4), 368-374. doi:10.1002/bbpc.19840880411

Marcandalli, B., Stange, G., &Holzwarth, J. F. (1988). Kinetics of the interaction of acridine dyes with nucleic acids. An iodine-laser temperature-jump investigation. Journal of the Chemical Society, Faraday Transactions 1, 84(8), 2807-2819. doi:10.1039/F19888402807

Alden, C. J., & Arnott, S. (1975). Visualization of planar drug intercalations in B-DNA. Nucleic Acids Research, 2(10), 1701-1717. doi:10.1093/nar/2.10.1701

Alden, C. J., & Arnott, S. (1977). Stereochemical model for proflavine intercalation in A-DNA. Nucleic Acids Research, 4(11), 3855-3861. doi:10.1093/nar/4.11.3855

Neidle, S., Pearl, L. H., Herzyk, P., & Berman, H. M. (1988). A molecular model for proflavine-DNA intercalation. Nucleic Acids Research, 16(18), 8999-9016. doi:10.1093/nar/16.18.8999

Herzyk, P., Neidle, S., &Goodfellow, J. M. (1992). Conformation and dynamics of drug-DNA intercalation. Journal of Biomolecular Structure and Dynamics, 10(1), 97-139. doi:10.1080/07391102.1992.10508633

Ruiz, R., Garcia, B., Ruisi, G., Silvestri, A., & Barone, G. (2009). Computational study of the interaction of proflavine with d(ATATATATAT)2 and d(GCGCGCGCGC)2. Journal of Molecular Structure:THEOCHEM, 915(1-3), 86-92. doi:10.1016/j.theochem.2009.08.022

Yoshida, N., Kiyota, Y., & Hirata, F. (2011). The electronic-structure theory of a large-molecular system in solution: application to the intercalation of proflavine with solvated DNA. Journal of Molecular Liquids, 159(1), 83-92. doi:10.1016/j.molliq.2010.04.019

Pack, G. R., Hashimoto, G. M., & Loew, G. H. (1981). Quantum chemical calculations on the two-step mechanism of proflavin binding to DNA. Annals of the New York Academy of Sciences, 367, 240-249. doi:10.1111/j.1749-6632.1981.tb50571.x

Islam, S. A., &Neidle, S. (1984). Nucleic acid binding drugs. X. A theoretical study of proflavine intercalation into RNA and DNA fragments: comparison with crystallographic results. Acta Crystallographica Section B, 40(4), 424-429. doi:10.1107/S010876818400241X

Sasikala, W. D., & Mukherjee, A. (2012). Molecular mechanism of direct proflavine-DNA intercalation: evidence for drug-induced minimum base-stacking penalty pathway. The Journal of Physical Chemistry B, 116(40), 12208-12212. doi:10.1021/jp307911r

Sasikala, W. D., & Mukherjee, A. (2013). Intercalation and de-intercalation pathway of proflavine through the minor and major grooves of DNA: roles of water and entropy. Physical Chemistry Chemical Physics, 15(17), 6446-6455. doi:10.1039/C3CP50501D

Sasikala, W. D., & Mukherjee, A. (2016). Structure and dynamics of proflavine association around DNA. Physical Chemistry Chemical Physics, 18(15), 10383-10391. doi:10.1039/C5CP07789C

Miroshnychenko, K. V., &Shestopalova, A. V. (2013, July). The study of different binding modes of proflavine with DNA and RNA sequences by molecular docking method: evidence for a proflavine as a minor groove binder. Paper presented at the 5th International Symposium “Methods and Applications of Computational Chemistry”, Kharkiv, Ukraine. Retrieved from: http://macc.org.ua/MACC-5/MACC5colored.pdf

Case, D. A., Cerutti, D. S., Cheatham, T. E. III, Darden, T. A., Duke, R. E., Giese, T. J., … Kollman P. A. (2017). AMBERTools17 [Computer software]. Retrieved from http://ambermd.org

Lu, X.-J., & Olson, W. K. (2008). 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nature Protocols, 3(7), 1213-1227. doi:10.1038/nprot.2008.104

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Pople, J. A. (2004). Gaussian 03 (Revision E.01) [Computer software]. Gaussian, Inc., Wallingford CT.

Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., ... Cieplak P. (2010). The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Physical Chemistry Chemical Physics, 12(28), 7821-7839. doi:10.1039/c0cp00111b

Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639-1662.

doi:10.1002/(SICI)1096-987X(19981115)19:14%3C1639::AID-JCC10%3E3.0.CO;2-B

Berman, H. M., Olson, W. K., Beveridge D. L., Westbrook, J., Gelbin, A., Demeny, T., … Schneider, B. (1992). The nucleic acid database.A comprehensive relational database of three-dimensional structures of nucleic acids. Biophysical journal, 63(3), 751-759. doi:10.1016/S0006-3495(92)81649-1

Case, D. A., Darden, T. A., Cheatham, T. E. III, Simmerling, C. L., Wang, J., Duke, R. E., ... Kollman P. A. (2012). AMBER 12[Computer software]. Retrieved from http://ambermd.org

Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). FF14SB: improving the accuracy of protein side chain and backbone parameters from FF99SB. Journal of Chemical Theory and Computation, 11(8), 3696-3713. doi:10.1021/acs.jctc.5b00255

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general AMBER force field. Journal of Computational Chemistry, 25(9), 1157-1174. doi:10.1002/jcc.20035

Berendsen, H. J. C., Grigera, J. R., &Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269-6271. doi:10.1021/j100308a038

Joung, I. S., & Cheatham, T. E. III (2009). Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. The Journal of Physical Chemistry B, 113(40), 13279-13290. doi:10.1021/jp902584c

Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: an N•log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089-10092. doi:10.1063/1.464397

Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327-341. doi:10.1016/0021-9991(77)90098-5

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., &Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684-3690. doi:10.1063/1.448118

Roe, D. R., & Cheatham, T. E. III (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084-3095. doi:10.1021/ct400341p

Humphrey, W., Dalke, A., &Schulten, K. (1996). VMD-visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38. doi:10.1016/0263-7855(96)00018-5

Miller, B. R. III, McGee, T. D. Jr., Swails, J. M., Homeyer, N., Gohlke, H., &Roitberg, A. E. (2012). MMPBSA.py: an efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314-3321. doi:10.1021/ct300418h

Tan, C., Tan, Y.-H., & Luo, R. (2007). Implicit nonpolar solvent models. The Journal of Physical Chemistry B, 111(42), 12263-12274. doi:10.1021/jp073399n

McQuarrie, D. A. (1976). Statistical Mechanics. New York: Harper & Row.

Rueda, M., Cubero, E., Laughton, C. A., & Orozco, M. (2004). Exploring the counterion atmosphere around DNA: what can be learned from molecular dynamics simulations? Biophysical Journal, 87(2), 800-811. doi:10.1529/biophysj.104.040451

Mocci, F., &Laaksonen, A. (2012). Insight into nucleic acid counterion interactions from inside molecular dynamics simulations is “worth its salt”. Soft Matter, 8(36), 9268-9284. doi:10.1039/C2SM25690H

Zgarbova, M., Otyepka, M., Sponer, J., Lankas, F., &Jurecka, P. (2014). Base pair fraying in molecular dynamics simulations of DNA and RNA. Journal of Chemical Theory and Computation, 10(8), 3177-3189. doi:10.1021/ct500120v

Fratini, A. V., Kopka, M. L., Drew, H. R., & Dickerson, R. E. (1982). Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTBrCGCG. Journal of Biological Chemistry, 257(24), 14686-14707. Retrieved from: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=7174662

Djuranovic, D., & Hartmann, B. (2003). Conformational characteristics and correlations in crystal structures of nucleic acid oligonucleotides: evidence for sub-states. Journal of Biomolecular Structure and Dynamics, 20(6), 771-788. doi:10.1080/07391102.2003.10506894

Wecker, K., Bonnet, M. C., Meurs, E. F., &Delepierre, M. (2002). The role of the phosphorus BI-BII transition in protein-DNA recognition: the NF-κB complex. Nucleic Acids Research, 30(20), 4452-4459. doi:10.1093/nar/gkf559

Djuranovic, D., Oguey, C., & Hartmann, B. (2004). The role of DNA structure and dynamics in the recognition of bovine papillomavirus E2 protein target sequences. Journal of Molecular Biology, 339(4), 785-796. doi:10.1016/j.jmb.2004.03.078

Robertson, J. C., & Cheatham, T. E. III (2015). DNA backbone BI/BII distribution and dynamics in E2 protein-bound environment determined by molecular dynamics simulations. The Journal of Physical Chemistry B, 119(44), 14111-14119. doi:10.1021/acs.jpcb.5b08486

Madhumalar, A., & Bansal, M. (2005). Sequence preference for BI/BII conformations in DNA: MD and crystal structure data analysis. Journal of Biomolecular Structure and Dynamics, 23(1), 13-27. doi:10.1080/07391102.2005.10507043

Heddi, B., Foloppe, N., Bouchemal, N., Hantz, E., & Hartmann, B. (2006). Quantification of DNA BI/BII backbone states in solution. Implications for DNA overall structure and recognition. Journal of the American Chemical Society, 128(28), 9170-9177. doi:10.1021/ja061686j

Ramakers, L. A. I., Hithell, G., May, J. J., Greetham, G. M., Donaldson, P. M., Towrie, M., ... Hunt, N. T. (2017). 2D-IR spectroscopy shows that optimized DNA minor groove binding of Hoechst33258 follows an induced fit model. The Journal of Physical Chemistry B, 121(6), 1295-1303. doi:10.1021/acs.jpcb.7b00345

Опубліковано
2019-04-02
Цитовано
Як цитувати
Miroshnychenko, K. V., & Shestopalova, A. V. (2019). Викликані лігандом конформаційні зміни ДНК в комплексах профлавіну по типу зв’язування в малому жолобку, досліджені за допомогою молекулярно-динамічного моделювання. Біофізичний вісник, (41), 5-33. https://doi.org/10.26565/2075-3810-2019-41-01
Розділ
Молекулярна біофізика