Influence of components of optical momentum and spin of evanescent waves on micro- and nanoobjects (Review)

  • O. V. Angelsky Taizhou Research Institute of Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, China; https://orcid.org/0000-0002-5463-8961
  • C. Yu. Zenkova Institute of Applied-Physics and Computer Sciences, Yury Fedkovich Chernivtsi National University, 2 Kotsyubynsky Str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0002-9108-8591
  • D. I. Ivanskyi Institute of Applied-Physics and Computer Sciences, Yury Fedkovich Chernivtsi National University, 2 Kotsyubynsky Str., Chernivtsi, 58012, Ukraine https://orcid.org/0000-0001-9588-5603
Keywords: evanescent wave, optical momentum, spin, optical force, torque, nanoparticle

Abstract

Background: Mechanical properties of light are widely used in applied areas, such as optical trapping and manipulation, sorting, deformation of biological cells and molecules. In general, the evanescent field may exhibit three components of optical momentum and spin angular momentum (spin), which manifest themselves in the occurrence of corresponding components of optical force and torque. Such extraordinary properties of evanescent waves open up new possibilities for manipulating of micro- and nanoobjects, in comparing with classical optical tweezers and manipulators, which can be used for solving the applied problems, in particular, of biomedicine.

Objectives: Aim of this work is to analyze and summarize recent studies regarding to the mechanical influence of evanescent field on micro- and nanoobjects, in particular, related to the influence of transverse components of optical momentum and spin.

Materials and methods: Method of momenta allows one to distinguish in an evanescent field the action of optical forces and torques, associated with the components of optical momentum and angular momentum of different nature and action direction, depending on the polarization of the incident wave. Experimental methods of particle manipulation in the near field allow visualizing such an influence, which makes it possible for solving the applied problems.

Results: Recent studies demonstrate the action on nano- and microobjects of such "extraordinary" optical momentum and spin components, as transverse spin momentum, transverse spin, transverse imaginary optical momentum component, and vertical spin. Using, in particular, the latter, to solve the applied problems of biomedicine is proposed, such as transporting of therapeutic agents to pathological areas or restoring vascular patency and tissue blood supply.

Conclusions: Obtained results of theoretical and experimental investigation of the mechanical action of the optical momentum and spin components of evanescent field allow us to extend the approaches of optical manipulation of micro- and nanoobjects, with the possibility of applications, in particular, for the problems of biomedicine.

Downloads

Download data is not yet available.

Author Biography

O. V. Angelsky, Taizhou Research Institute of Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, China;

Taizhou Research Institute of Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, China; Institute of Applied-Physics and Computer Sciences, Yury Fedkovich Chernivtsi National University, 2 Kotsyubynsky Str., Chernivtsi, 58012, Ukraine

References

Poynting JH. The momentum of a beam of light. Atti del IV Congresso Internazionale dei Matematici. 1909;3:169–74.

Poynting JH. The wave-motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc R Soc Lond A. 1909;82:560–7. http://doi.org/10.1098/rspa.1909.0060

Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 1970;24:156–9. https://doi.org/10.1103/PhysRevLett.24.156

Padgett MJ, Molloy J, McGloin D. Optical Tweezers: Methods and Applications. CRC Press; 2010. 508 p.

Zenkova CYu, Gorsky MP, Ryabyj PA. Phase retrieval of speckle fields based on 2D Hilbert transform. Optical Memory and Neural Networks. 2015 Oct;24(4):303–8. https://doi.org/10.3103/S1060992X15040074

Angelsky OV, Zenkova CYu, Gorsky MP, Ryabiy PA. Search for methods of restoring spatial phase distribution of complex optical fields. The Open Optics Journal. 2014;8(1):3–13. http://doi.org/10.2174/1874328501408010003

Zenkova CYu, Gorsky MP, Ryabiy PA, Angelskaya AO. Additional approaches to solving the phase problem in optics. Appl Opt. 2016;55(12):B78–B84. https://doi.org/10.1364/ao.55.000b78

Bliokh KY, Nori F. Transverse spin of a surface polariton. Phys Rev A. 2012 Jul;85(6):061801. https://doi.org/10.1103/PhysRevA.85.061801

Bliokh KY, Bekshaev AY, Nori F. Extraordinary momentum and spin in evanescent waves. Nat Commun. 2014;5:3300. https://doi.org/10.1038/ncomms4300

Bliokh KY, Nori F. Transverse and longitudinal angular momenta of light. Phys Rep. 2015;592:1–38. https://doi.org/10.1016/j.physrep.2015.06.003

Antognozzi M, Bermingham C, Harniman R, Simpson S, Senior J, Hayward R, et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat Phys. 2016;12:731–5. https://doi.org/10.1038/nphys3732

Bekshaev AY. Dynamical characteristics of an electromagnetic field under conditions of total reflection. J Opt. 2018;20(4):045604. https://doi.org/10.1088/2040-8986/aab035

Jackson JD. Classical electrodynamics. New York: John Wiley & Sons; 1998. 832 p. ISBN: 978-0-471-30932-1

Andrews DL. Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. Amsterdam: Elsevier; 2008. 400 p. ISBN: 9780123740274

Angelsky OV, Polyanskii PV, Mokhun II, Zenkova CYu, Bogatyryova HV, Felde CV, et al. Optical measurements: polarization and coherence of light fields. Modern Metrology Concerns, Dr. Luigi Cocco (Ed.). INTECH Open Access Publisher; 2012. pp. 263–316. https://doi.org/10.5772/36553

Bekshaev AY, Angelsky OV, Sviridova SV, Zenkova CYu. Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows. Advances in Optical Technologies. 2011;723901. https://doi.org/10.1155/2011/723901

Keigo I, editor. Boundaries, near-field optics and near-field imaging. In: Elements of photonics. Vol. I: In Free space and special media. New York: John Wiley & Sons; 2002. p. 110–65. ISBN: 0-471-83938-8

de Fornel F. Evanescent waves: From newtonian optics to atomic optics. Berlin: Springer; 2001. 270 p. ISBN: 978-3-540-65845-0

Axelrod D. Chapter 1 – Evanescent excitation and emission. In: Anda Cornea, P. Michael Conn, editors. Fluorescence microscopy: Super-resolution and other novel techniques. 1st ed. Waltham: Elsevier; 2014. p. 1–14. https://doi.org/10.1016/B978-0-12-409513-7.00001-4 ISBN: 978-0-12-409513-7

Jozefowski L, Fiutowski J, Kawalec T, Rubahn H-G. Direct measurement of the evanescent-wave polarization state. J Opt Soc Am B. 2007;24:624–8. https://doi.org/10.1364/JOSAB.24.000624

Kawalec T, Józefowski L, Fiutowski J, Kasprowicz MJ, Dohnalik T. Spectroscopic measurements of the evanescent wave polarization state. Opt Commun. 2007;274(2):341–6. https://doi.org/10.1016/j.optcom.2007.02.042

Kawata S, Sugiura T. Movement of micrometer-sized particles in the evanescent field of a laser beam. Opt Lett. 1992;17(11):772–4. https://doi.org/10.1364/OL.17.000772

Almaas E, Brevik I. Radiation forces on a micrometer-sized sphere in an evanescent field. Opt Soc Am B. 1995;12:2429–38. https://doi.org/10.1364/JOSAB.12.002429

Chang S, Kim J, Jo J, Lee S. Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering. Opt Commun. 1997;139(4–6):252–61. https://doi.org/10.1016/S0030-4018(97)00144-2

Bekshaev A, Bliokh K, Nori F. Mie scattering and optical forces from evanescent fields: A complex-angle approach. Opt Express. 2013;21(6):7082–95. https://doi.org/10.1364/OE.21.007082

Nieto-Vesperinas M, Saenz J. Optical forces from an evanescent wave on a magnetodielectric small particle. Opt Lett. 2010;35(23):4078–80. https://doi.org/10.1364/OL.35.004078

Sasaki K, Hotta J, Wada K, Masuhara H. Analysis of radiation pressure exerted on a metallic particle within an evanescent field. Opt Lett. 2000;25(18):1385–7. https://doi.org/10.1364/OL.25.001385

Gaugiran S, Gétin S, Fedeli J, Derouard J. Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces. Opt Express. 2007;15(13):8146–56. https://doi.org/10.1364/OE.15.008146

Ganic D, Gan X, Gu M. Trapping force and optical lifting under focused evanescent wave illumination. Opt Express. 2004;12(22):5533–8. https://doi.org/10.1364/OPEX.12.005533

Volpe G, Quidant R, Badenes G, Petrov D. Surface plasmon radiation forces. Phys Rev Lett. 2006;96: 238101. https://doi.org/10.1103/PhysRevLett.96.238101

Righini M, Volpe G, Girard C, Petrov D, Quidant R. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys Rev Lett. 2008 May 6;100(18).186804 https://doi.org/10.1103/PhysRevLett.100.186804

Wang K, Schonbrun E, Crozier K. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. Nano Lett. 2009;9(7):2623–9. https://doi.org/10.1021/nl900944y

Min C, Shen Z, Shen J, Zhang Y, Fang H, Yuan G., et al. Focused plasmonic trapping of metallic particles. Nature Commun. 2013;4(1):2891. https://doi.org/10.1038/ncomms3891

Kawata S, Tani T. Optically driven Mie particles in an evanescent field along a channeled waveguide. Opt Lett. 1996;21(21):1768–70.https://doi.org/10.1364/OL.21.001768

Yang A, Lerdsuchatawanich T, Erickson D. Forces and transport velocities for a particle in a slot waveguide. Nano Lett. 2009;9(3):1182–8. https://doi.org/10.1021/nl803832q

Belinfante F. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica. 1940;7(5):449–74. https://doi.org/10.1016/S0031-8914(40)90091-X

Fedorov F. To the theory of total reflection. J Opt. 2013;15(1):014002. https://doi.org/10.1088/2040-8978/15/1/014002

Chang S, Lee SS. Optical torque exerted on a sphere in the evanescent field of a circularly-polarized Gaussian laser beam. Optics Commun. 1998;151(4–6):286–96. https://doi.org/10.1016/S0030-4018(98)00067-4

Song YG, Chang S, Jo JH. Optically induced rotation of combined Mie particles within an evanescent field of a Gaussian beam. Jpn J Appl Phys. 1999;38(Part 2, No. 4A):L380–3. https://doi.org/10.1143/JJAP.38.L380

Šiler M, Čižmár T, Šerý M, Zemánek P. Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery. Appl Phys B. 2006;84(1–2):157–65. https://doi.org/10.1007/s00340-006-2235-9

Šiler M, Čižmár T, Jonáš A, Zemánek P. Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination. New J Phys. 2008;10(11):113010. https://doi.org/10.1088/1367-2630/10/11/113010

Šiler M, Zemánek P. Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave. J Opt. 2011;13(4):044016.https://doi.org/10.1088/2040-8978/13/4/044016

Paul N, Kemp B. Optical manipulation of small particles on the surface of a material. J Opt. 2016;18(8):085402. https://doi.org/10.1088/2040-8978/18/8/085402

Liu L, Kheifets S, Ginis V, Di Donato A, Capasso F. Elliptical orbits of microspheres in an evanescent field. PNAS. 2017;114(42):11087–91. https://doi.org/10.1073/pnas.1714953114

Ploschner M, Čižmár T, Mazilu M, Di Falco A, Dholakia K. Bidirectional optical sorting of gold nanoparticles. Nano Lett. 2012;12(4):1923–7. https://doi.org/10.1021/nl204378r

Hayat A, Mueller JPB, Capasso F. Lateral chirality-sorting optical forces. PNAS. 2015;112(43):13190–4. https://doi.org/10.1073/pnas.1516704112

Wang SB, Chan CT. Lateral optical force on chiral particles near a surface. Nat Commun. 2014;5(1):3307. https://doi.org/10.1038/ncomms4307

Rodríguez-Fortuño F, Engheta N, Martínez A, Zayats A. Lateral forces on circularly polarizable particles near a surface. Nat Commun. 2015;6(1):8799. https://doi.org/10.1038/ncomms9799

Angelsky OV, Hanson SG, Maksimyak PP, Maksimyak AP, Zenkova CYu, Polyanskii PV, et al. Influence of evanescent wave on birefringent microplates. Opt Express. 2017;25(3):2299–311. https://doi.org/10.1364/OE.25.002299

Zenkova CYu, Ivanskyi DI, Kiyashchuk TV. Optical torques and forces in birefringent microplate. Opt Appl. 2017;47(3):483–492. https://doi.org/10.5277/oa170313

Maksimyak PP, Maksimyak AP, Ivanskyi DI, Kiyashchuk TV. Extraordinary spin momenta in birefringent structures. Opt Mem Neural Network. 2017;26(2):157–64. https://doi.org/10.3103/S1060992X17020059

Angelsky OV, Zenkova CYu, Ivansky DI. Mechanical action of the transverse spin momentum of an evanescent wave on gold nanoparticles in biological objects media. J Optoelectron Adv M. 2018;20(5–6):217–23. Available from: https://joam.inoe.ro/articles/mechanical-action-of-the-transverse-spin-momentum-of-an-evanescent-wave-on-gold-nanoparticles-in-biological-objects-media/fulltext

Sabatini DM, editor. Leading Edge Nanotechnology. Research. Developments. New York: Nova Science Publishers; 2007. 304 p. ISBN: 9781600219009

Angelsky OV, Ushenko YA, Dubolazov AV, Telenha OY. The interconnection between the coordinate distribution of Mueller-matrixes images characteristic values of biological liquid crystals net and the pathological changes of human tissues. Adv Opt Technol. 2010;130659. http://doi.org/10.1155/2010/130659

Tuchin VV, editor. Handbook of optical biomedical diagnostics, Volume 1: Light-Tissue Interaction. 2nd ed. New York: SPIE; 2016. 864 p. ISBN: 9781628419092. https://doi.org/10.1117/3.2219603

Angelsky O, Maksymyak P, Zenkova C, Maksymyak A, Hanson S, Ivanskyi D. Peculiarities of control of erythrocytes moving in an evanescent field. J Biomed Opt. 2019;24(05):055002. https://doi.org/10.1117/1.jbo.24.5.055002

Angelsky OV, Zenkova CYu, Maksymyak PP, Ivanskyi DI, Tkachuk VM. Peculiarities of energy circulation in evanescent field. Application for red blood cells. Opt Mem Neural Network (Information Optics). 2019;28(1):11–20. https://doi.org/10.3103/S1060992X19010028

Grover SC, Gauthier RC, Skirtach AG. Analysis of the behavior of erythrocytes in an optical trapping system. Opt Express. 2000;7(13):533–9. https://doi.org/10.1364/OE.7.000533

Ahluwalia BS, Mc Court P, Huser T, Hellesø OG. Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt Express. 2010;18(20):21053–61. https://doi.org/10.1364/OE.18.021053

Yoon Y-Z, Cicuta P. Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses. Opt. Express. 2010;18(7):7076–84. https://doi.org/10.1364/OE.18.007076

Zhong M, Wei X, Zhou J, Wang Z, Li Y. Trapping red blood cells in living animals using optical tweezers. Nat Commun. 2013;4:1768. https://doi.org/10.1038/ncomms2786

Gu M, Kuriakose S, GanX. A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes. Opt. Express. 2007;15(3):1369–75. https://doi.org/10.1364/OE.15.001369

Kugeiko MM, Smunev DA. Estimation of the microphysical parameters for native red blood cells based on the measured optical properties of scattered radiation. Vestnik BGU. Serija 1, Fizika. Matematika. Informatika [Vestnik of Belarusian State University. Ser. 1, Physics. Mathematics. Informatics]. 2016;1(2):73–8. Available from: http://elib.bsu.by/handle/123456789/171864 (in Russian)

Published
2020-08-01
Cited
How to Cite
Angelsky, O. V., Zenkova, C. Y., & Ivanskyi, D. I. (2020). Influence of components of optical momentum and spin of evanescent waves on micro- and nanoobjects (Review). Biophysical Bulletin, (43), 133-147. https://doi.org/10.26565/2075-3810-2020-43-14
Section
Action of physical agents on biological objects