Characterization of zigzag patterns on the surface of bovine serum albumin films

  • D. M. Glibitskiy O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, 12, Acad. Proskura St., 61085, Kharkiv 61022, Ukraine https://orcid.org/0000-0002-1000-7770
  • O. A. Gorobchenko V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine http://orcid.org/0000-0003-1580-0679
  • O. T. Nikolov V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine https://orcid.org/0000-0002-3020-5539
  • A. V. Shestopalova O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, 12, Acad. Proskura St., 61085, Kharkiv 61022, Ukraine https://orcid.org/0000-0002-7691-4285
  • M. A. Semenov O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, 12, Acad. Proskura St., 61085, Kharkiv 61022, Ukraine
Keywords: BSA, film, zigzag patterns, texture, statistical distribution

Abstract

Analysis of the patterns formed during the drying of biological fluids is employed for research and diagnosis in medicine and agriculture. Saline solutions of native proteins and DNA are characterized by zigzag patterns, which could be quantitatively described using the specific length of zigzags Lspecific. The aim of this study was to analyze a wide number of characteristics in order to identify those most sensitive to the effects of various physical and chemical factors on the protein structure. We examined the films prepared from salt solutions of bovine serum albumin (BSA) under varying conditions, viz.: a proportional change in the concentration of the components, substitution of NaCl with NaF and NaBr, temperature treatment, gamma irradiation, and addition of trivalent iron and biologically active flavin mononucleotide. The results revealed that the distribution of zigzag segment lengths was approximately lognormal, and the distribution of angles between the segments was approximately logistic. Two parameters appeared to be the most informative, viz. the average length of the segments, mainly depending on Cl concentration, and the number of segments, depending on: Cl concentration, concentration of the non-aggregated (but not necessarily unfragmented) protein, and the excess concentration of ions and low molecular weight compounds.

Downloads

Download data is not yet available.

References

1. Yahno TA, Kazakov VV, Sanin OA, Sanin AG, Yahno VG. Drops of biological fluids, drying on a solid substrate: the dynamics of morphology, mass, temperature and mechanical properties. Zh. Tekh. Fiz. 2010;80:17–23.

2. Pivovarenko YV. Nature of the of polymorphism of salt crystals in the aspect of arborization diagnostic method. Morphologia. 2016;10:72–6.

3. Yakhno TA. Complex Pattern Formation in Sessile Droplets of Protein-Salt Solutions with Low Protein Content. What Substance Fabricates These Patterns? Phys. Chem. 2011;1:10–3.

4. Markevich VE, Kirilenko EA, Petrashenko VA, Zablotskaya TU, Bilokon TA. Methods of wedge dehydration of biological fluids. Morphologia. 2014;8:113–7.

5. Gorza FDS, Pedro GC, Trescher TF, da Silva RJ, Silva RJ, de Souza NC. Morphological Analysis and Interaction of Chlorophyll and BSA. BioMed. Res. Int. 2014;2014:1–6.

6. Shabalin VN. Shatokhina SN. The markers of malignant growth in the morphological picture of human biological fluids. Questions of Oncology. 2010;56(3):293–300.

7. Chen R, Zhang L, Zang D, Shen W. Blood drop patterns: Formation and applications. Advances in Colloid and Interface Science. 2016;231:1–14.

8. Zablotskaya TU. Analysis of the main processes and types of structures in the dehydration of biological fluids. Electromech. and energy-saving systems. 2010;4(12):92–5.

9. Elizarov AI, Zablotskaya TU. The method of quantitative evaluation of images with central symmetry on the example of the facies of biological fluids. Bull. of KSPU. 2007;1(42):8–13.

10. Killeen AA, Ossina N, McGlennen RC, Minnerath S, Borgos J, Alexandrov V et al. Protein Self-Organization Patterns in Dried Serum Reveal Changes in B-Cell Disorders. Mol. Diag. Ther. 2006;10(6):371–80.

11. Kokornaczyk M, Kahl J, Roose M, Busscher N, Ploeger A. Organic wheat quality from a defined Italian field-trial. In: 16th IFOAM Organic World Congress : book of abstracts [Internet]; 2008 June 16-20; Modena, Italy. Available from: http://orgprints.org/11732/1/Kokornaczyk_11732_rev.doc.

12. Kokornaczyk MO, Dinelli G, Marotti I, Benedettelli S, Nani D, Betti L. Self-Organized Crystallization Patterns from Evaporating Droplets of Common Wheat Grain Leakages as a Potential Tool for Quality Analysis. TheScientificWorldJOURNAL. 2011;11:1712–25.

13. Andersen J-O Henriksen CB, Laursen J, Nielsen AA. Computerised image analysis of biocrystallograms originating from agricultural products. Computers and Electronics in Agriculture. 1999;22:51–69.

14. Busscher N, Kahl J, Andersen JO, Huber M, Mergardt G, Doesburg P et al. Standardization of the Biocrystallization Method for Carrot Samples. Biol. Agriculture and Horticulture. 2010;27:1–23.

15. Kahl J, Busscher N, Doesburg P, Mergardt G, Huber M, Ploeger A. First tests of standardized biocrystallization on milk and milk products. Eur. Food Res. Technol. 2009;229:175–8.

16. Patent 110130 Ukraine, IPC12 C09K 19/38, G01N 33/48, G01N 21/956. Method for the estimation of substance effect on biopolymers / G. M. Glibitskiy, D. M. Glibitskiy ; owner is A. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine. – №a201312123, 
appl. 16.10.2013 ; publ. 25.11 2015, bull. № 22. – 7 p.

17. Patent 111769 Ukraine, IPC12 G01N 21/898, G01N 21/956, C09K 19/38, G01N 33/48. Method for the estimation of substance effect on biopolymers / G. M. Glibitskiy, D. M. Glibitskiy ; owner is A. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine. – №a201408411, appl. 25.11.2014 ; publ. 10.06.2016, bull. № 11. – 8 p.

18. Glibitskiy GM, Glibitskiy DM, Gorobchenko OA, Nikolov OT, Roshal AD, Semenov MA et al. Textures on the surface of BSA films with different concentrations of sodium halides and water state in solution. Nanoscale Res. Lett. 2015;10(1):155–64.

19. Glibitskiy DM, Glibitskiy GM, Semenov MA, Shestopalova AV. Textures of BSA films with iron and copper ions. Biophys. Bull. 2016;35(1):21–7.

20. Raz E, Lipson SG, Ben-Jacob E. New periodic morphologies observed during dendritic growth of ammonium chloride crystals in thin layers. J. of Crystal Growth. 1991;108:637–46.

21. Mougin K, Haidara H. Complex Pattern Formation in Drying Dispersions. Langmuir. 2002;18:9566–9.

22. Gorobchenko OA, Nikolov OT, Glibitskiy DM, Roshal AD, Shestopalova AV, Semenov MA et al. Effect of gamma irradiation of protein solution on the formation of film textures. Nanotechnology and nanomaterials; 2015 Aug 26-29; Lviv, Ukr. 2015. P. 386.

23. Glibitskiy DM, Gorobchenko OA, Nikolov OT, Zibarov AM, Roshal AD, Semenov MA et al. Effect of flavin mononucleotide on the texture of BSA films. Nanotechnology and nanomaterials. 2016 Aug 24-27; Lviv, Ukr. 2016. P. 132.

24. Liu X-Y, Wang M, Li D-W, Strom CS, Bennema P, Ming N-B. Nucleation-limited aggregation of crystallites in fractal growth. J. of Crystal Growth. 2000;208:687–95.

25. Mitzenmacher M. A Brief History of Generative Models for Power Law and Lognormal Distributions. Internet Mathematics. 2003;1(2):226–51.

26. Burr IW. Cumulative frequency functions. Ann. Math. Stat. 1942;13(2):215–32.

27. Gusmao FRS de, Ortega EMM, Cordeiro GM. The generalized inverse Weibull distribution. Stat. Papers. 2011;52:591–619.

28. Borzova VA, Markossian KA, Chebotareva NA, Kleymenov SYu, Poliansky NB, Muranov KO et al. Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin. PLoS One. 2016;11(4).

29. Cho YS, Song KB. Effect of γ-Irradiation on the Molecular Properties of Bovine Serum Albumin and β-Lactoglobulin. J. Biochem. Mol. Biol. 2000;33(2):133–7.

30. Mishra K, Ojha H, Kallepalli S, Alok A, Chaudhury KN. Protective effect of ferulic acid on ionizing radiation induced damage in bovine serum albumin. Int. J. Radiat. Res. 2014;12(2):113–21.

31. Akhavan A, Kalhor HR, Kassaee MZ, Sheikh N, Hassanlou M. Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chem. Eng. J. 2010;159:230–5.

32. Xu X, Zhang L, Shen D, Wu H, Liu Q. Oxygen-dependent oxidation of Fe(II) to Fe(III) and interaction of Fe(III) with bovine serum albumin, leading to a hysteretic effect on the fluorescence of bovine serum albumin. J. Fluoresc. 2008;18(1):193–201.

33. Ben-Jacob E, Garic P. The formation of patterns in non-equilibrium growth. Nature. 1990;343:523–30.

34. Sengupta A, Sasikala D, Mukherjee A, Hazra P. Comparative study of flavins binding with human serum albumin: a fluorometric, thermodynamic, and molecular dynamics approach. Chemphyschem. 2012;13(8):2142–53.

35. Zhang Y, Görner H. Flavin-sensitized photo-oxidation of lysozyme and serum albumin. Photochem. Photobiol. 2009;85(4):943–8.

36. Guo XJ, Sun XD, Xu SK. Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. J. of Mol. Structure. 2009;931(1):55–9.

37. Wang G, Tang W, Hao X, Yan C, Lu Y. Binding mechanism of halide ions to bovine serum albumin and hemoglobin: investigated by ion selective-electrode. J. Biophys. Chem. 2011;2 (3):194–201.

Citations

METHOD OF ESTIMATION OF THE INFLUENCE OF CHEMICAL AND PHYSICAL FACTORS ON BIOPOLYMERS BY THE TEXTURES OF THEIR FILMS
Glibitskiy D., Gorobchenko O., Nikolov O., Cheipesh T., Dzhimieva T., Zaitseva I., Roshal A., Zibarov A., Shestopalova A., Semenov M. & Glibitskiy G. (2019) RADIOFIZIKA I ELEKTRONIKA
Crossref

Published
2017-09-11
Cited
How to Cite
Glibitskiy, D. M., Gorobchenko, O. A., Nikolov, O. T., Shestopalova, A. V., & Semenov, M. A. (2017). Characterization of zigzag patterns on the surface of bovine serum albumin films. Biophysical Bulletin, 1(37), 16-29. https://doi.org/10.26565/2075-3810-2017-37-03
Section
Methods of biophysical investigations