Intensities of the raman bands in the low-frequency spectra of DNA with light and heavy counterions
Abstract
For calculating the mode intensities of DNA conformational vibrations in the Raman spectra, a spatial
approach is developed. It is based on the valence-optic scheme and four-mass model with counterions. In
frames of this approach, it is grounded that the vibrations of nucleosides as physical pendulums with
respect to the phosphate groups of the double helix backbone and the internucleoside vibrations make the
greatest polarizability changes in the DNA monomer link. The calculations for Na-and Cs-DNA low-frequency Raman spectra show that in both cases the modes near 15 cm-1, characterizing the vibrations of nucleosides as pendulums, have the greatest intensity.In the Na-DNA spectra at a frequency range of upper than 40 cm-1, the modes of H-bond stretching in base pairs 60 and 115 cm-1 have the greatest intensities. The mode of internucleoside vibrations 79 cm-1 has lower intensity. Taking into consideration the heterogeneity of macromolecule structure elements, the resulting form of Na-DNA low-frequency spectra in the middle frequency range looks like a continuous band with the center near 80 cm-1 that corresponds to the experimental data.In Cs-DNA spectra at this frequency range,the mode of iron phosphate vibrations 115cm-1 is prominent. Its intensity is much higher than the intensities of Na-DNA modes of this spectra range. The intensities of other Cs-DNA modes are much lower than in the case of Na-DNA. The comparison of our calculations with the experimental data shows that the developed approach describes well the changes in Raman spectra, observing under the substitution of Na+ counterions for Cs+The determined the sensitivity of the intensities of DNA low-frequency spectra to the counterion type proves the existence of the ion-phosphate modes.
Downloads
References
2. Благой Ю.П., Галкин В.Л., Гладченко Г.О., Корнилова С.В., Сорокин В.А., Шкорбатов А.Г. Металлокомплексы нуклеиновых кислот в растворах. – Киев: Наукова думка, 1991.
3. Baumann C.G., Smith S.B., Bloomfield V.A., Bustamante C. // Proc. Natl. Acad. Sci. USA. 1997. V. 94. P. 6185 – 6190.
4. Williams L.D., Maher L.J. // Annu. Rev. Biophys. Biomol. Struct. 2000. V. 29. P. 497–521.
5. Kornyshev A.A., Lee D.J., Leikin S., Wynveen A. // Rev. Mod. Phys. 2007. V. 79. P. 943-966. 6. Manning G. S. // Quart. Rev. Biophys. 1978. V. 11, № 2. P. 179 - 246.
7. Франк-Каменецкий М.Д., Аншелевич В.В., Лукашин А.В. // УФН. 1987. V. 151, № 4. P. 595 - 618.
8. Das R., Mills T.T., Kwok L.W., Maskel G.S., Millett I.S., Doniach S., Finkelstein K.D., Herschlag D., Pollack L. // Phys. Rev. Lett. 2003. V. 90, № 18. P. 188103-1 – 188103-4.
9. Ponomarev S.Y., Thayer K.M., Beveridge D.L. // Proc. Natl. Acad. Sci. USA 2004. V. 101. P. 14771– 14775.
10. Varnai P., Zakrzewska K. // Nucleic Acids Res. 2004. V. 32. P. 4269–4280.
11. Gu B., Zhang F.S., Wang Z.P., Zhou H.Y. // Phys. Rev. Lett. 2008. V. 100. P. 088104-1 – 088104-4.
12. Волков С.Н., Косевич А.М. // Молекулярная биология 1987. Т. 21. С. 797 - 8 06.
13. Волков С.Н., Косевич А.М., Вайнреб Г. Е. // Биополимеры и клетка 1989. Т. 5. С. 32 - 39.
14. Volkov S.N., Kosevich A.M. // J. Biomolec. Struct. Dyn. 1991. V. 8. P. 1069 - 1083.
15. Perepelytsya S.M., Volkov S.N. // Ukr. J. Phys. 2004. Т. 49. С. 1072 - 1077. arXiv:q-bio/0412022v1 [q1- bio.BM]
16. Перепелица С.Н., Волков С.Н. // Біофізичний вісник. 2005. Т.1(15). C. 5 - 10.
17. Perepelytsya S.M., Volkov S.N. // Eur. Phys. J. E. 2007. V. 24. P. 261 - 269.
18. Weidlich T., Powell J.W., Genzel L., Rupprecht A. // Biopolymers. 1990. V. 30. P. 477 - 480.
19. Булавін Л.А., Волков С.Н., Кутовий С.Ю., Перепелиця С.М. // Доп. НАН України. 2007. № 10. С. 69 - 73. arXiv:0805.0696v1 [q-bio.BM]
20. Волькенштейн М.В., Ельяшевич М.А, Степанов Б.И. Колебания молекул. Т.2. – Москва: ГИТТЛ, 1949.
21. Snoke D.W., Cardona M. // Solid State Commun. 1993. V. 87, № 2. P. 121 – 126.
22. Dykeman E.C., Sankey O.F, Tsen K.-T. // Phys. Rev. E. 2007. V. 76. P. 011906-1 – 011906-12.
23. Dykeman E.C., Sankey O.F. // Phys. Rev. Lett. 2008. V. 100. P. 028101-1 – 028101-4.
24. Федорченко А.М. Теоретична фізика. Механіка. Київ: Вища школа, 1971.
25. Silberstein L. // Philosophy Magazine 1917. V. 33. P. 92.
26. Urabe H., Tominaga Y. // J. Phys. Soc. Japan. 1981. V. 50, № 11. P. 3543 - 3544.
27. Rozenberg H., Rabinovich D., Frolow F., Hegde R. S., Shaked Z. // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 15194 - 15199.
28. Верещагин А.Н. Поляризуемость молекул.-Москва: Наука, 1980.
29. Lamba Om P., Wang A.H.-J., Thomas G.J.Jr, // Biopolymers. 1989. V. 28. P. 667 - 678.
30. Weidlich T., Lindsay S.M., Rui Qi, Rupprecht A. // J. Biomolec.Struct. Dyn. 1990. V. 8. P. 139 - 171.
31. Tominaga Y., Shida M., Kubota K., Urabe H., Nishimura Y., Tsuboi M. // J. Chem. Phys. 1985. V. 83,
№ 11. P. 5972 - 5975.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).