The way of modeling of spatials structure of protein on determining it nucleotide sequences

  • V. V. Sokolik SI « Institute of neurology, psychiatry and narcology of the AMS Ukraine»
Keywords: personal structural template of protein, genetic code of three-dimensional structure of protein, configuration of peptide bond, α-subunit of hemoglobin, major actin, α-actin 1

Abstract

The novel way of modeling the spatial structure of a protein in determining its nucleotide sequences is
elaborated. The concept of a configuration of peptide bond as the major coded in genome alongside with
amino acids by the rests, an element of the spatial structure of the protein. The table of a genetic code of the spatial structure of the protein is presented, using which it is possible to construct a structural template of protein, and also to decode the presence and position of fragments of the secondary structure of it. The important advantage of a method is that it is possible to construct a structural pattern individually for any unknown protein only "having read through" determining its nucleotide sequence. The lead comparative analysis of schemes of secondary structure, decoded on nucleotide sequences, and schemes from Protein Data Bank, constructed on the basis of experimental data of spectroscopy of a nuclear magnetic resonance and the roentgen-structural analysis, for α-subunit of hemoglobin, major actinandα-actin 1 testified to greater resolvability (up to 1 amino acids rest), accuracy (100 %), unambiguity (an individual structural pattern) and simplicity of the way of modeling offered in given work.

Downloads

Download data is not yet available.

Author Biography

V. V. Sokolik, SI « Institute of neurology, psychiatry and narcology of the AMS Ukraine»

Academician Pavlov St.,46,Kharkov, 61068, Ukraine,

e-mail: sokolik67@rambler.ru

References

1. Финкельштейн А.В., Птицын О.Б. Физика белка. Курс лекций. М.: Книжный Дом Университет. 2002. 376 с.

2. Anfinsen C.B. Structural basis of ribonuclease activity. FedProc. 1957. V.16.№3. Р.783–791.

3. Карасёв В.А. Генетическийкод: новые горизонты. СПб.: ТЕССА. 2003. 145 с.

4. Карасёв В.А., Лучинин В.В. Введение в конструирование бионических наносистем. М.: Физматлит. 2009. 463 с.

5. Кондратьев М.С., Кабанов А.В., Комаров В.М. Спиралеобразующие конформеры в структурной организации метиламидов N-ацетил-alpha-L-аминокислот. Квантово-химический анализ. Биофизика. Т.52. №3. С.401—408.

6. Crick F. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol.1966. V.19. Р.548-555.

7. Соколик В.В. Принципы моделирования 3D-структуры белков-виновников возраст-зависимой конформационной патологии. Клиническая геронтология. 2009. T.15. №8-9. С.119.

8. He Y., Chen Y., Alexander P. et al. NMR structures of two designed proteins with high sequence identity but different fold and function. Proc. Natl. Acad. Sci. USA. 2008. №105. Р. 14412—14417.

9. Илиел Э. Основы стереохимии. М.: ИЦ «Академия». 2008. 464 с.
10. Кушелев А.Ю., Полищук С.Е., Неделько Е.В. и др. Построение масштабной модели структуры белка. Актуальные проблемы современной науки. 2002. №.2(5). С.236—243.

11. Волькенштейн М.В. Конфигурационная статистика полимерных цепей. М.-Л. 1959. 466 с.

12. Jimenez-Montano M.A., Mora-Basanez C.R., Poschel Th. The hypercube structure of the genetic code explains conservative and non-conservative amino acid substitutions in vivo and in vitro. BioSystems. 1996. V.39. Р.117—125.

13. Самченко А. А., Кабанов А. В., Комаров В. М. Бистабильность неплоской формы пептидной группы в структуре дипептидов L-аминокислот. "Математика. Компьютер. Образование". Cб. трудов XIV международной конференции. Под общей редакцией Г.Ю. Ризниченко Ижевск: Научно-издательский центр "Регулярная и хаотическая динамика". 2007. Т. 2. С. 291—304.
Cited
How to Cite
Sokolik, V. V. (1). The way of modeling of spatials structure of protein on determining it nucleotide sequences. Biophysical Bulletin, 1(24). Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/3867