Interaction of new fluorescent ICT-dyes with lipid membranes

  • O. A. Zhytnyakovskaya V.N. Karazin Kharkiv National University
  • O. K. Kutsenko V.N. Karazin Kharkiv National University
  • V. M. Trusova V.N. Karazin Kharkiv National University
  • G. P. Gorbenko V.N. Karazin Kharkiv National University
  • T. Deligeorgiev Department of Applied Organic Chemistry, Faculty of Chemistry, University of Sofia
  • S. Kaloyanova Department of Applied Organic Chemistry, Faculty of Chemistry, University of Sofia
  • N. Lesev Department of Applied Organic Chemistry, Faculty of Chemistry, University of Sofia
Keywords: ICT dyes, liposomes, phosphatidylcholine, cardiolipin, cholesterol

Abstract

The present study was undertaken to evaluate the sensitivity of newly synthesized ICT dyes to the
changes in physicochemical properties of lipid bilayer. Partitioning of ICT4 into lipid phase of the model
membranes composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid
cardiolipin and cholesterol was followed by the decrease of fluorescence quantum yield and shortwavelength shift of emission maximum. On the contrary, ICT2 exhibited tenfold increase of the quantum yield upon interaction with liposomes, without any shift of the emission maximum. Analysis of the partition coefficients showed that inclusion of cardiolipin and choleterol into phosphatidylcholine bilayer gives rise to increase of the ICT2 incorporation into lipid phase compared to the neat phosphatidylcholine membrane.

Downloads

Download data is not yet available.

Author Biographies

O. A. Zhytnyakovskaya, V.N. Karazin Kharkiv National University

4 Svobody Sq., Kharkiv, 61077, Ukraine

O. K. Kutsenko, V.N. Karazin Kharkiv National University

4 Svobody Sq., Kharkiv, 61077, Ukraine

V. M. Trusova, V.N. Karazin Kharkiv National University

4 Svobody Sq., Kharkiv, 61077, Ukraine

G. P. Gorbenko, V.N. Karazin Kharkiv National University

4 Svobody Sq., Kharkiv, 61077, Ukraine

T. Deligeorgiev, Department of Applied Organic Chemistry, Faculty of Chemistry, University of Sofia

Bulgaria

S. Kaloyanova, Department of Applied Organic Chemistry, Faculty of Chemistry, University of Sofia

Bulgaria

N. Lesev, Department of Applied Organic Chemistry, Faculty of Chemistry, University of Sofia

Bulgaria

References

1. Valeur B. Molecular fluorescence:principles and applications. Wiley-VCH Verlag GmbH. 2001.

2. Lakowicz J.R. Principles of fluorescent spectroscopy. Springer: Singapore. 2006.

3 Xu Z., Xiao Y., Qian X., Cui J., Cui D. Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT) // Org. Lett. 2005. V. 7(5). P. 889-892.

4. Mause M. Photoinduced intramolecular charge transfer in donor-acceptor Biaryls and resulting applicational aspects regarding fluorescent probes and solar energy conversion // IBBN: 1-58112-030-3.

5 Lin L.R., Li Z., Yang W.L., Chen H., Jiang Y.B. Intramolecular charge transfer dual fluorescence pH sensing using p-dibutylaminobenzoic acid-β-cyclodextrin inclusion complex // Chin. Chem. Lett. 2003. V. 14(5). P. 495 – 498.

6. Čmiel V., Mravec F., Halasová T., Sekora J., Provazník I. Emission properties of potential-responsive probe Di-4-ANEPPS // Analysis of Biomedical Signals and Images. 2010. V. 20. P. 359 - 363.

7. Pal S.K., Sukul D., Mandal D., Bhattacharyya K. Solvation dynamics of DCM in lipid // J. Phys. Chem. B. 2000. V. 104. P. 4529 - 4531.

8. Koehorst R.B.M., Spruijt R.B., Hemminga M.A. Site-directed fluorescence labeling of a membrane protein with BADAN: Probing protein topology and local environment // Biophys. J. 2008. V. 94. P. 3945 – 3955.

9. Koehorst R.B.M., Laptenok S., van Oort B., van Hoek A., Spruijt R.B., van I.H.M. Stokkum, van Amerongen H., Hemminga M.A. Profiling of dynamics in protein–lipid–water systems: a time-resolved fluorescence study of a model membrane protein with the label BADAN at specific membrane depths // Eur. Biophys. J. 2010. V. 39. P. 647 – 656.

10. Haidekker M.A., Brady T.P., Lichlyter D., Theodorakis E.A. Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes // Bioorg. Chem. 2005. V. 33. P. 415 – 425.

11. Loutfy R.O. Fluorescence probes for polymer free-volume // Pure Appl Chem. 1986. V. 58. P. 1239 – 1248.

12. Kung C.E. Reed J.K Microviscosyty measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation // Biochem.1986 V.25. P. 6114 – 6121.

13. Lukac S., Thermically induced variations in polarity and microviscosity of phospholipid and surfactant vesicles monitored with a probe forming an intramolecular charge-transfer complex // Am. Chem. Soc.1984. V. 106. P. 4386 – 4392.

14. Haidekker M.A., Heureux N. L., Frangos J.A., Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence // Am. J. Physiol. Heart Circ. Physiol. 2000. V. 278. P. 401 – 406.

15. Mui B., L. Chow L., Hope M.J. Extrusion technique to generate liposomes of defined size // Meth. Enzymol. 2003. V. 367.P. 3 - 14.

16. Bartlett G. Phosphorus assay in column chromatography // J. Biol. Chem. 1959.V. 234.P. 466 - 468.

17. Santos N.C., Prieto M., Castanho M.A.R.B. Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods // Biochim. Biophys. Acta. 2003. V. 1612. P. 123 - 135.

18. Heerklotz H., Binder H., Lantzsch, G. Klose G., Blume A. Lipid/detergent interaction thermodynamics as a function of molecular shape // J. Phys. Chem. 1997. V. 101.p. 639 - 645.
Cited
How to Cite
Zhytnyakovskaya, O. A., Kutsenko, O. K., Trusova, V. M., Gorbenko, G. P., Deligeorgiev, T., Kaloyanova, S., & Lesev, N. (1). Interaction of new fluorescent ICT-dyes with lipid membranes. Biophysical Bulletin, 2(25). Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/2748