Modeling protein adsorption onto lipid monolayer surface

  • V. M. Trusova V.N. Karazin Kharkiv National University
Keywords: lipid monolayer, protein sorption, Frumkin isotherm

Abstract

Using the modified Frumkin approach, the adsorption of protein onto the surface of lipid monolayer has
been simulated allowing for the different types of protein-lipid interactions. The results were presented in
terms of the monolayer surface pressure increase induced by protein sorption (  ) as a function of initial
surface pressure ( 0). The simulated curves were obtained under varying a range of interaction
parameters. It was suggested that the trend of 0  ( ) plot allows to distinquish between protein
interfacial localization and its penetration into lipid monolayer. The theoretical predictions are in accord
with the experimental observations available in literature

Downloads

Download data is not yet available.

Author Biography

V. M. Trusova, V.N. Karazin Kharkiv National University

4 Svobody Sq., Kharkiv, 61022

References

1. Porath J. Salting-out adsorption techniques for protein purification / J. Porath // Biopolymers. – 2004. – V. 26. – P. 193–204.

2. Adsorption of bovine serum albumin and lysozyme on siliceous MCM-41 / A. Katiyar, L. Ji, P. G. Smirniotis, N. G. Pinto // Micropor. Mesopor. Mater. – 2005. – V. 80. – P. 311–320.

3. Comparison of the protein adsorption selectivity of salt-promoted agarose-based adsorbents – hydrophobic, thiophilic and electron donor-acceptor adsorbents / P. P. Berna, N. Berna, J. Porath, S. Oscarsson // J. Chromat. A. – 1998. – V. 800. – P. 151–159.

4. Horbett T. A. Principles underlying the role of adsorbed plasma proteins in blood interactions with foreign materials / T. A. Horbett // Cardiovasc. Pathol. – 1993. – V. 2. – P. 137–148.

5. Characterization of self-assembled monolayers for biosensor applications / R. M. Nyquist, A. S. Eberhardt, L. A. Silks [et al.] // Langmuir. – 2000. – V. 16. – P. 1793–1800.

6. Selective protein adsorption and blood compatibility of hydroxycarbonate apatites / S. Takemoto, Y. Kusudo, K. Tsuru [et al.] // J. Biomed. Mater. Res. A. – 2004. – V. 69. – P. 544–551.

7. Bajpai A.K. Blood protein adsorption onto a polymeric biomaterial of polyethylene glycol and poly[(2-hydroxyethyl methacrylate)-co-acrylonitrile] and evaluation of in vitro blood compatibility / A. K. Bajpai // Polymer Internat. – 2005. – V. 54. – P. 304–315.

8. Tang L. Inflammatory responses to implanted polymeric biomaterials: role of surface-adsorbed immunoglobulin G / L. Tang, A. H. Lucas, J. W. Eaton // J. Lab. Clin. Med. – 1993. – V. 122. – P. 292–300.

9. Tang L. Fibrinogen adsorption and host tissue responses to plasma functionalized surfaces / L. Tang, Y. Wu, R. B. Timmons // J. Biomed. Mater. Res. – 1998. – V. 42. – P. 156–163.

10. Heimburg T. Themodynamics of the interaction of proteins with lipid membranes, In Biological Membranes: A molecular perspective from computation and experiment / T. Heimburg, D. Marsh // Birkhauser Boston. – 1996. – P. 405–462.

11. Sankaram M. Protein-lipid interactions with peripheral membrane proteins / M. Sankaram, D. Marsh // In Protein-Lipid Interactions, Elsevier. – 1993. P. 127–162.

12. Bray D. Signaling complexes: biophysical constraints on intracellular communication / D. Bray // Ann. Rev. Biophys. Biomol. Struct. – 1998. – V. 27. – P. 59–75.

13. Protein-induced fusion can be modulated by target membrane lipids through a structural switch at the level of the fusion peptide / E. I. Pecheur, I. Martin, A. Bienvenue [et al.] // J. Biol. Chem. – 2000. – V. 275. – P. 3936–3942.

14. A new model to describe extrinsic protein binding to phospholipid membranes of varying composition: application to human coagulation proteins / G. A. Cutsforth, R. N. Whitaker, J. Hermans, B. R. Lentz // Biochemistry. – 1989. – V. 28. – P. 7453–7461.

15. Cholera toxin assault on lipid monolayers containing ganglioside GM1 / C. E. Miller, J. Majewski, R. Faller [et al.] // Biophys. J. – 2004. – V. 86. – P. 3700–3708.

16. Protein adsorption on supported phospholipid bilayers / K. Glasmӓstar, C. Larsson, F. Höök, B. Kasemo // Colloid Interface Sci. – 2002. – V. 246. – P. 40–47.

17. Gorbenko G. P. Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association / G. P. Gorbenko, V. M. Ioffe, P. K. J. Kinnunen // Biophys. J. – 2007. – V. 93. – P. 140–153.

18. Salafsky J. S. Protein adsorption at interfaces detected by second harmonic generation / J. S. Salafsky, K. B. Eisenthal // J. Phys. Chem. B. – 2000. – V. 104. – P. 7752–7755.

19. Morphological changes of supported lipid bilayers induced by lysozyme: planar domain formation vs. multilayer stacking / V.M. Trusova, G.P. Gorbenko, I. Akopova [et al.] // Colloids Surf. B. – 2010. – V. 80. – P. 219–226.

20. Dynamics of β-lactoglobulin penetration into Langmuir monolayers of 2D condensating phospholipid / V. B. Fainerman, J. Zhao, D. Vollhardt [et al.] // J. Phys. Chem. B. – 1999. – V. 103. – P. 8998–9007.

21. Peng J. B. The structure of Langmuir-Blodgett films of fatty acids and their salts / J. B. Peng, G. T Barnes, I. R. Gentle // Adv. Colloid Interface Sci. – 2001. – V. 91. – P. 163–219.

22. Brockman H. Lipid monolayers: why use half a membrane to characterize protein-membrane interactions / H. Brockman // Curr. Opin. Struct. Biol. – 1999. – V. 9. – P. 438–443.

23. Study of gramicidin A – phospholipid interactions in Langmuir monolayers: analysis of their mechanical, thermodynamical, and electrical properties / M. Weis, M. Vanco, P. Vitovic [et al.] // J. Phys. Chem. B. – 2006. – V. 110. – P. 26272–26278.

24. Interaction of myelin basic protein with phospholipid monolayers: mechanism of protein penetration / E. Polverini, S. Arisi, P. Cavatorta [et al.] // Langmuir. – 2003. – V. 19. – P. 872–877.

25. Molecular organization in protein-lipid film on the water surface studied by x-ray standing wave measurements under total external reflection / S. Zheludeva, N. Novikova, N. Stepina [et al.] // Spectrochim. Acta B. – 2008. – V. 63. – P. 1399–1403.

26. Pethica B. A. The thermodynamics of monolayer penetration at constant area. Part 1 / B. A. Pethica // Trans. Faraday Soc. – 1955. – V. 51. – P. 1402–1411.

27. Anderson P. J. The thermodynamics of monolayer penetration at constant area. Part 1 / P. J. Anderson, B. A. Pethica // Trans. Faraday Soc. – 1956. – V. 52. – P. 1080–1087.

28. Alexander D. M. Use of the Gibbs equation to calculate adsorption into monolayer-covered surfaces / D. M. Alexander, G. T. Barnes // J. Chem. Soc. Faraday Trans. 1. – 1980. – V. 76. – P. 118–125.

29. Thermodynamics of multicomponent monolayers: IV. Monolayer penetration / K. Motomura, Y. Hayami, M. Aratono, R. Matuura // J. Colloid Interface Sci. – P. 333–338.

30. Ter-Minassian-Saraga L. Penetration into insoluble monolayers. 1. A semiopen system behavior / L. Ter-Minassian-Saraga // Langmuir. – 1985. – V. 1. – P. 391–394.

31. Fainerman V. B. Penetration of Langmuir monolayers by soluble amphiphilic molecules / V. B. Fainerman, D. Vollhardt // Langmuir. – 1999. – V. 15. – P. 1784–1790.

32. Sundaram S. Equations for the equilibrium surface pressure increase on the penetration of an insoluble monolayer by soluble surfactant / S. Sundaram, K. J. Stebe // Langmuir. – 1996. – V. 12. – P. 2028–2034.

33. Datwani S. S. Monolayer penetration by a charged amphiphile: equilibrium and dynamics / S. S. Datwani, K. J. Stebe // Colloids Surf. A. – 2001. – V. 192. – P. 109–129.

34. Analysis of the contribution of saturated and polyunsaturated phospholipid monolayers to the binding of proteins / P. Calvez, É. Demers, E. Boisselier, C. Salesse // Langmuir. – 2011. – V. 27. – P. 1373–1379.

35. Influence of the physical state of phospholipid monolayers on protein binding / E. Boisselier, P. Calvez, É. Demers [et al.] // Langmuir. – 2012. – V. 28. – P. 9680–9688.

36. Benga G. Interactions between components in biological membranes and their implication for membrane function / G. Benga, R. Holmes // Progr. Biophys. Mol. Biol. – 1984. – V. 43. – P. 195–257.

37. Jahnig F. Thermodynamics and kinetics of protein incorporation into membranes / F. Jahnig // Proc. Natl. Acad. Sci. USA. – 1983. – V. 80. – P. 3691–3695.

38. Zuckermann M. J. Insertion and pore formation driven by adsorption of protein onto lipid bilayer membrane-water interface / M. J. Zuckermann, T. Heimburg // Biophys. J. – 2001. – V. 81. – P. 2458–2472.

39. Interaction of influenza virus hemagglutinin with a lipid monolayer. A comparison of the surface activities of intact virions, isolated hemagglutinins, and a synthetic fusion peptide / K. N. J. Burger, S. A. Wharton, R. A. Deme1, A. J. Verkleij // Biochemistry. – 1991. – V. 30. – P. 11173–11180.

40. Streptomyces chromofuscus phospholipase D interaction with lipidic activators at the air-water interface / K. E. Kirat, J. P. Chauvet, B. Roux, F. Besson // Biochim. Biophys. Acta. – 2004. – V. 1661. – P. 144–153.

41. Interactions of adriamycin, cytochrome c, and serum albumin with lipid monolayers containing poly(ethylene glycol)-ceramide / H. Zhao, P. M. Dubielecka, T. Soderlund, P. K. J. Kinnunen // Biophys. J. – 2002. – V. 83. – P. 954–967.

42. Thakur G. Surface chemistry of Alzheimer’s disease: a Langmuir monolayer approach / G. Thakur, M. Micic, R. M. Leblanc // Colloids Surf. B. – 2009. – V. 74. – P. 436–456.
Cited
How to Cite
Trusova, V. M. (1). Modeling protein adsorption onto lipid monolayer surface. Biophysical Bulletin, 1(29). Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/2326