Investigation of thermal stability of primary structure of nucleic acids

  • A.I.Gasan Institute for Radiophysics and Electronics of NAS of Ukraine
  • V.Ya.Maleev Institute for Radiophysics and Electronics of NAS of Ukraine
  • A.V.Filipsky Institute for Radiophysics and Electronics of NAS of Ukraine
Keywords: polynucleotide, DNA, thermal stability, differential scanning calorimetry

Abstract

The thermal stability of natural DNA and polynucleotides (polyA, polyG, polyC, polyU) was studied by the method of differential scanning microcalorimetry. The thermograms of studied materials in the temperature range from 20 to 300°С have been obtained. The specific feature of experimental curves for all samples is the presence of sharp exothermic peaks. For the moist sample of DNA (the water content is higher than 5%) the endothermic peak near 100°С has been found. It is supposed that exothermic peaks at high temperatures (about 250°С for polynucleotides and 160°С for DNA) result from irreversible processes of thermal degradation of initial structure of polymers. The endothermic peak for a moist DNA sample is caused by the melting of secondary structure of DNA that may be formed at low humidity. The temperatures and temperature intervals of destruction process have been determined, and the values of effective heat of a thermal destruction and its activation energy were calculated. It was shown that all polynucleotides have the essential differences of the thermal stability.

Downloads

Download data is not yet available.

Author Biographies

A.I.Gasan, Institute for Radiophysics and Electronics of NAS of Ukraine

12 Acad. Proskura str., Kharkov , 61085, Ukraine

V.Ya.Maleev, Institute for Radiophysics and Electronics of NAS of Ukraine

12 Acad. Proskura str., Kharkov , 61085, Ukraine

A.V.Filipsky, Institute for Radiophysics and Electronics of NAS of Ukraine

12 Acad. Proskura str., Kharkov , 61085, Ukraine

References

1. Hoyer H.W., Barrett E.J. // Anal. Biochem. 1966. V. 17. 344.

2. Hoyer H.W. // J. Am. Chem. Soc. 1968 V.90. 2480.

3. Hoyer H.W. // Nature. 1967. V.216. 997.

4. Olafsson P.G., Bryan A.M. //Microchim. Acta. 1970. V.871.

5. Павлова С.А., Журавлева И.В., Толчинский Ю.И. Термический анализ органических и высокомолекулярных соединений (Методы аналитической химии) - М.: Химия.1983-120 с.

6. Берг Л.Г. Введение в термрграфию: Наука, 1969.-395 с.

7. Illers K. // Europ. Polym. J. 1974. V.10. P. 911-916.

8. Селихова В.М., Зубов Ю.А., Бакеев Н.Ф., Белов Г.П. // Высокомолек. соед. 1977.Т.19.4.С.759-764

9. Gasan A.I.. Maleev V.Y. Semonov M.A. // Studia Biophysica. 1990. V.136. 171

10. Rupprecht A., Chandrasrkaran R., Anthony L., Lee S.A., Lucan A.M., Marlowe R L// Journal of Biomolecular Structure & Dynamics. 1996. V.14. 3.

11. Уэндланд У. Термические методы анализа - М.: Мир. 1978.- 526 с.

12. Kissinger H.E. // J. Res. Nat. Bur. Standarts. 1956. V.57. 217.

13. Емельянов Ю.А., Берштейн В.А. // Физ. хим. стекла. 1985. Т. 11.4. с. 429-440

14. Шахпаронов М.И., Дуров В.А. // ЖФХ. 1979. Т.53. 10.с. 2451-2460.

15. Havlicer J., Nicolais L.// Polymer. 1986. V.27. 6. P. 921-924.

16. Bueche E. // J. Chem. Phys. 1956. V. 24. 2. P. 418-425.
Published
2002-06-05
Cited
How to Cite
Gasan, A., Maleev, V., & Filipsky, A. (2002). Investigation of thermal stability of primary structure of nucleic acids. Biophysical Bulletin, 2(11), 20-24. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/18484