Quercitin influence on platelet aggregation in blood of insulinreistant female rats with estrogen deficiency

  • M. S. Kudinov Karazin Kharkiv National University
  • S. V. Gatash Karazin Kharkiv National University
  • O. A. Gorobchenko Karazin Kharkiv National University
  • O. T. Nikolov Karazin Kharkiv National University
  • N. I. Gorbenko V.Danilevsky Institute for Problems of Endocrine Pathology of AMS of Ukraine
Keywords: plasma full of platelets, platelet aggregation, photoelectrocolorimetry, insulinresistance, dielectric spectroscopy, Microwave dielectrometry

Abstract

Insulin resistance and hyperinsulinemia belong to specific characteristics not only of sugar diabetes 2 and obesity, but present in hyperlipidemia, atherosclerosis, and aging processes. Pharmacotherapy of metabolic syndrome must have a tendency of increased tissue sensitivity to insulin because insulin resistance is one of the main components of the syndrome. At the present day, there are investigations of the pharmacological agents, what belongs to flavonoid in particular, with the aim of using it in sugar diabetes 2 and metabolic syndrome treating. Quercitin, as representative of flavonoids, attracts attention as a potential pharmacological agent. The studying of drugs was realized in experimental disease models in rats. Chronicle saccharose introduction to ovariectomized rats promotes further evolution of insulin resistance, hypotony, hyperglicerinemy, oxidative stress, i.e. allows recreating common signs of postmenopausal human metabolic syndrome, which was used in this work to create syndrome model. For investigation were used Wister rats with weight in the range of 290-300 g. Bodyweight increase, uterus weight increase, level of platelet aggregation and it's speed, the dielectric permittivity of plasma full of platelets of rats blood, were taken as indicators of influence characteristics of quercitin on the disease. The level and speed of aggregation were measured by the photo electro colorimetry method. Real (ε') part of complex dielectric permittivity of plasma, full of platelets, was fixed by UHF-dielectrometer at 9.2 GHz. The result of the experiment was defined, that ovariectomy even in the standard diet leads to rising in the speed of ADP-induced platelet aggregation. Also in the presence of insulin resistance, there is a decrease of dielectric permeability of PFP, i.e. a result of increasing platelet concentration in blood. Using the investigated drug in 10 mg/kg dose was not correlating with speed or level of ADP-induced platelet aggregation. At the same time, individuals, who take drugs in 50 mg/kg dose, have shown the normalizing of these indexes.

Downloads

Download data is not yet available.

Author Biographies

M. S. Kudinov, Karazin Kharkiv National University

4 Svobody Sq., Kharkiv 61077, Ukraine

S. V. Gatash, Karazin Kharkiv National University

4 Svobody Sq., Kharkiv 61077, Ukraine

O. A. Gorobchenko, Karazin Kharkiv National University

4 Svobody Sq., Kharkiv 61077, Ukraine

O. T. Nikolov, Karazin Kharkiv National University

4 Svobody Sq., Kharkiv 61077, Ukraine

N. I. Gorbenko, V.Danilevsky Institute for Problems of Endocrine Pathology of AMS of Ukraine

10 Artema St., Kharkiv 61002, Ukraine

nikita.kudinov@gmail.com

References

1. DeFronzo R.A. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity,
hypertension, dislipidaemia and atherosclerotic cardiovascular disease / R.A. DeFronzo., E. Ferrannini //
Diabetes Care. – 1991. – Vol. 14, № 2. – P. 173-195.

2. Липсон В. В., Полторак В. В., Горбенко Н. И. Современное средство для лечения сахарного диабета типа II:
достижения и перспективы поиска (обзор) //Хим. фармацевтический журнал. - 1997. - № 11. - С. 5–9.

3. Воскобой И.В., Македонская М.В., Россошанская С.И., Логвин Е.В. Особенности агрегации тромбоцитов у
больных ишемической болезнью сердца. - Сборник научных трудов «Современные проблемы развития
регионального здравоохранения». - Казань, 2003. – с.

4. Недосугова Л. В., Волковой А. К., Рудько И. А.,Бегляров Д. А., Кубатиев А. А., Балаболкин М, И.
Сравнительная оценка эффективности биофлавоноидов Диквертина и Танакана в комплексной терапии СД типа 2
//Клиническая фармакология и терапия. – 2000. - №4. – С. 65-67.

5. Тюкавкина Н.А., Руленко И.А., Колесник Ю.А. Природные флавоноиды как пищевые антиоксиданты и
биологически активные добавки // Вопросы питания. - 1996. - № 2. – С. 33-38.

6. Middleton E., Kandaswami C. The Effects of Plant Flavonoids on Mammalian Cells: Implications for
Inflammation, Heart Disease, and Cancer // Pharmacol. Rev. – 2000. – Vol. 52, №.4. – P. 673-751.

7. J.A. Conquer, G. Maiani, E. Azzini et al. Supplementation with Quercetin Markedly Increases Plasma Quercetin
Concentration without Effect on Selected Risk Factors for Heart Disease in Healthy Subjects // J. Nutrition. – 1998. – Vol.
128, №3. – P. 593-597.

8. Breinholt V. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes
in female rat // V. Breinholt, S.T. Lauridsen, L.O. Dragsted // Xenobiotica. – 1999. – Vol. 29, №12. – P. 1227-
1240.

9. J.A. Conquer, G. Maiani, E. Azzini et al. Supplementation with Quercetin Markedly Increases Plasma Quercetin
Concentration without Effect on Selected Risk Factors for Heart Disease in Healthy Subjects // J. Nutrition. – 1998. – Vol.
128, № 3. – P. 593-597.

10. I. Huk, V. Brovkovich, V. Nanobash et. аl. Bioflavonoid quercetin scavenges superoxide and increases nitric oxide
concentration in ischaemia-reperfusion injury: an experimental study // Br. J. Surg. – 1998. – Vol. 85, № 8. – P. 1080-1085.

11. I. Huk, V. Brovkovich, V. Nanobash et. аl. Bioflavonoid quercetin scavenges superoxide and increases nitric oxide
concentration in ischaemia-reperfusion injury: an experimental study // Br. J. Surg. – 1998. – Vol. 85, № 8. – P. 1080-1085.

12. Erden I.M., Kahraman A.The protective effect of flavonol quercetin against ultraviolet A induced oxidative stress
in rats // Toxicology. – 2000. – Vol. 154. – P. 21–29.

13. J. Duarte, M. Galisteo, M.A. Ocete, et al. Effect of chronic quercetin treatment on hepatic oxidative
status in spontaneously hypertensive rats // J. Mol. Cell. Biochem. – 2001. – Vol. 221, № 1-2. – P. 155–160.

14. Igura K., Ohta T., Kuroda Y., Kaji K. Resvetatrol and quercetin inhibit angiogenesis in vitro //
Cancer. Lett. – 2001. – Vol. 171, № 1. – P. 11–16.

15. Mahesh T. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats / T. Mahesh,
V.P. Menon // Phytother. Res. – 2004. – Vol. 18, № 2. – P. 123-127.

16. Coskum O., Kanter M., Korkmaz A., Oter S.Quercetin, a flavonoid antioxidant, prevents and protects
streptozotocin-induced oxidative stress and β-cell damage in rat pancreas // Pharmacol. Res. – 2005. – Vol.
51, № 2. – P. 117–123.

17. A.S. Dias, M. Porawski, M. Alonso et al. Quercetin decreases oxidative stress, NF-kB activation, and
iNOS overexpression in liver of streptozotocin-induced diabetic rats // Journal of Nutrition. – 2005. – Vol.
135, № 10. – P. 2299-2304.

18. Лоскутов И. А. Некоторые аспекты иммунотропной активности флавоноида кверцетина//Роль молодых
ученых и специалистов медиков в совершенствовании медицинской помощи населению: Тез. докл.— Челябинск,
1987.— С. 54–55.

19. Кугач В. В., Никульшина Н. И., Ищенко В. И. Лекарственные формы флавоноидов//Хим.-фармацевт.
журнал.— 1988.— Т. 22, № 8.— С. 1018–1025.

20. Park S.M., Park C.H., Wha J.D., Choi S.B. A high carbohydrate diet induces insulin resistance
through decreased glucose utilization in ovariectomized rats // Korean J. Intern. Med. – 2004. – Vol. 19, №2.
– P. 87-92.

21. Nordt T.K., Schneider D.J., Sobel B.E. Augmentation of the synthesis of plasminogen activator
inhibitor type-1 by precursors of insulin. A potential risk factor for vascular disease // Circulation. – 1994. –
Vol. 89, №1. – P. 321-330.

22. Kannel W.B., D'Agostino R.B., Wilson P.W. et al. Diabetes, fibrinogen, and risk of cardiovascular
disease; Framingham experience // Am. Heart J. – 1990. – Vol. 120, № 3. – P.672-676.

23. Ishii H., Umeda F., Nawata H.Platelet function in diabetes mellitus // Diabetes Metab. Rev. –1992. –
Vol. 8, № 1. – P.53-66.

24. Brown S., Hong A.S., De Belder A., et al. Megakaryocyte ploidy and platelet changes in human
diabetes and atherosclerosis // Atheroscler. Tromb. Vasc. Biol. – 1997. – Vol. 17, №4. – P. 802-807.

25. Западнюк И.П., Западнюк В.И., Захария Е.А. Лабораторные животные, их разведение,
содержание и использование в эксперименте. – К.: Гос. мед. изд-во УССР, 1962. – С. 243 – 277.

26. Маркосян А.А. Физиология тромбоцитов. «Наука», Ленинград, 1970.

27. Вашкинель В.К. Ультраструктура и функция тромбоцитов человека. «Наука», ЛО, 1982.

28. Самаль А.Б. Агрегация тромбоцитов: методы изучения и механизмы, Минск : Университетское издание,
1990.

29. Берковский А.Л., Васильев С.А., Жердева Л.В. и др. Пособие по изучению адгезивноагрегационной активности тромбоцитов. – М., 2002. – 28 с.

30. Hackl E.V., Gatash S.V., Nikolov O.T. Using UHF-dielectrometry to study protein structural transitions. // J.
Biochem. Biophys. Meth. - 2005. – V. 63, № 2. - P. 137–148.

31. Шахпаронов М. И., Ахадов Я. Ю. Диэлектрические свойства и молекулярное строение растворов водаацетон // Журн. структур. хим. –1965. – Т. 6, № 1. – C. 21-26.

32. Augoulea A., Mastorakos G., Lambrinoudaki I. et al. Role of postmenopausal hormone replacement
therapy on body fat gain and leptin levels // Gynecol. endocrinol. – 2005. – Vol. 20, № 4. – P. 227-235.

33. Bains R.K., Wells S.E., Flavell D.M. et al. Visceral obesity without insulin resistance in late-onset
obesity rats // Endocrinology. – 2004. – Vol. 145, №6. – P. 2666-2679.

34. Blasko G., Nemesanszky E., Szabo G., et al. The effect of PGI2 and PGI2 analogues with increased
stability on platelet cAMP content and aggregation // Thromb Res. – 1980. – Vol. 17. – P. 673-681.
Published
2008-06-04
Cited
How to Cite
Kudinov, M. S., Gatash, S. V., Gorobchenko, O. A., Nikolov, O. T., & Gorbenko, N. I. (2008). Quercitin influence on platelet aggregation in blood of insulinreistant female rats with estrogen deficiency. Biophysical Bulletin, 2(21), 81-87. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/16792
Section
Action of physical agents on biological objects