Cadmium ion effects on phase equilibrium in double-stranded poly(rA) poly(rU)

  • G. O. Gladchenko Institute for Low Temperature Physics & Engineering, NASU
  • Yu. P. Blagoi Institute for Low Temperature Physics & Engineering, NASU
  • V. A. Sorokin Institute for Low Temperature Physics & Engineering, NASU
  • V. A. Valeev Institute for Low Temperature Physics & Engineering, NASU
  • E. A. Andrus' Institute for Low Temperature Physics & Engineering, NASU
  • V. A. Karachevtsev Institute for Low Temperature Physics & Engineering, NASU
Keywords: nucleic acids, metal ions, cadmium, conformational transitions

Abstract

Differential UV spectroscopy was used to study heating and Cd2+ ion induced conformational transitions in double-stranded poly(rA) poly(rU) (AU) and its components (single-stranded poly(rA) and poly(rU)) in buffer solutions (pH 6.5) containing 0.03M Na+. It was revealed that with the rise of the cadmium ion concentration single-stranded polynucleotides undergo a number of conformational transitions, the character of which is conditioned with the dominant type of the metal complex. The phase diagram of poly(rA)-poly(rU) measured in solution with cadmium ions at 0.03M Na+ is compared with diagrams for AU+Cd2+ at 0.1M Na+ and AU+Mg2+ at 0.01M Na+. It was shown that at low metal concentrations the helix-coil transition in AU is of one-phase cooperative character. When some critical concentration [Mtcr] is reached, the 2—>1 transition is replaced with the disproportional 2AU—>A2U+poly(rA) (2—>3) transition after which the disruption of the triple helix (3—>1) takes place. The [Mtcr] value depends on the sodium ion content in solution: the more the Na+ concentration, the higher concentration of divalent ions corresponds to the triple point. A series of Na+ concentrations ([Na+]= 0.01, 0.03 and 0.1 М) presets such [Mtcr] positions as 4•10-5, 6•10-5 and 10-4М that represent a linear dependence [Mtcr] = f([Na+]) in the double logarithmic scale.The cadmium binding to poly(rA) bases results in the narrowing of the existence region of triple helices (in comparison with that of Mg2+ ions). The Cd2+ ion interaction with O4 of uracil causes the further destabilization of the triple helix.

Downloads

Author Biographies

G. O. Gladchenko, Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

Yu. P. Blagoi, Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

V. A. Sorokin, Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

V. A. Valeev, Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

E. A. Andrus', Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

V. A. Karachevtsev, Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

References

L’Azou B, Dubus I, Ohayon-Courtes C, Labouyrie J, Perez L, Pouvreau L, et al. Toxicology. 2002;179:233-45.

Hossain Z, Huq F. J. Inorg. Biochem. 2002;90:97-105.

Hartwig A. Pure Appl. Chem. 2000;72:1007-14.

Kowara R, Karaczyn AA, Fivash M.J.Jr, Kasprzak KS. Chem. Res. Toxicol. 2002;15:319-25.

Joseph P, Lei YX, Whong WZ, Ong TM. J. Biol. Chem. 2002;277:6131-6.

Lei YX, Chen JK, Wu ZL. Teratog. Carcinog. Mutagen. 2002;22:377-83.

Giovannangeli C, Rougee M, Garestier T, Thuong NT, Helene C. Proc. Natl. Acad. Sci. USA. 1992;89:8631-5.

Praseuth D, Guieysse AL, Helene C. Biochim. Biophyss. Acta. 1999;1489:181-206.

Felsenfeld G, Davies DR, Rich A. J. Amer. Chem. Soc. 1957;79:2023-4.

Zenger V. Printcipy strukturnoi organizatcii nukleinovykh kislot. Moskva:Mir; 1987. 584p. (in Russian)

Krakauer H, Sturtevant JM. Biopolymers. 1968;6:491-512.

Krakauer H. Biochemistry. 1974;13:2579-89.

Stevens ChL, Felsenfeld G. Biopolymers. 1964;2:293-314.

Yang L, Keiderling TA. Biopolymers. 1993;33:315-27.

Andrushchenko V, Blagoi Yu, van de Sande JH, Wieser H. J. Biomol. Struct. Dynam. 2002;19:889-906.

Sehlstedt U, Aich P, Bergman J, Vallberg H, Norden B, Graslund A. J. Mol. Biol. 1998;278:31-56.

Sorokin VA, Valeev VA, Gladchenko GO, Degtiar MV, Blagoi YuP. Macromol. Biosci. 2001;1:191-203.

Sorokin VA, Valeev VA, Gladchenko GO, Degtiar MV, Karachevtsev VA, Blagoi YuP. Int. J. of Biol. Macromol. 2003;31:223-33.

Sorokin VA, Valeev VA, Gladchenko GO, Degtiar MV, Rubina AYu, Andrus EA, et al. Biophysical Bulletin. 2001;2(9):45-50.

Blagoi IuP, Galkin VL, Gladchenko GO, Kornilova SV, Sorokin VA, Shkorbatov AG. Metallokompleksy nukleinovykh kislot v rastvorakh. Kiev:Naukova dumka; 1991. 270p. (in Russian)

Aoki K. Nucleosides, Nucleotides and Metal Ions. Elsevier: Amsterdam, Oxford, New York; 1988. P. 457-90.

Gellert RW, Bau R, Martin RB, Mariam YaH. Metal ions in biological system. 1979;8:chapt. 1-2.

Sigel H, Massoud SS, Corfu NA. J. Am. Chem. Soc. 1994;116:2958-71.

Katoh Y, Kuninaka A, Yoshino H. Agr. Biol. Chem. 1975;39(10):1957-62.

Shin YA. Biopolymers. 1973;12:2459-75.

Post CB, Zimm BH. Biopolymers. 1982;21:2133-7.

Yamasaki Yu, Teramoto Y, Yoshikawa K. Biophysical J. 2001;80:2823-32.

Bloomfield VA. Biopolymers. 1997;44:269-82.

Diebler H, Secco F, Venturini M. Biophys. Chem. 1987;26:193-205.

Blagoi Yu, Gladchenko G, Nafie LA, Freedman TB, Sorokin V, Valeev V, et al. Biopolymers. 2005;78:275-86.

Porschke D. Biopolymers. 1971;10:1989-2013.
Published
2018-12-06
Cited
How to Cite
Gladchenko, G. O., Blagoi, Y. P., Sorokin, V. A., Valeev, V. A., Andrus’, E. A., & Karachevtsev, V. A. (2018). Cadmium ion effects on phase equilibrium in double-stranded poly(rA) poly(rU). Biophysical Bulletin, 1(18), 14-22. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/12615