Cadmium ion effects on phase equilibrium in double-stranded poly(rA) poly(rU)

  • G. O. Gladchenko Institute for Low Temperature Physics & Engineering, NASU
  • Yu. P. Blagoi Institute for Low Temperature Physics & Engineering, NASU
  • V. A. Sorokin Institute for Low Temperature Physics & Engineering, NASU
  • V. A. Valeev Institute for Low Temperature Physics & Engineering, NASU
  • E. A. Andrus' Institute for Low Temperature Physics & Engineering, NASU
  • V. A. Karachevtsev Institute for Low Temperature Physics & Engineering, NASU
Keywords: nucleic acids, metal ions, cadmium, conformational transitions

Abstract

Differential UV spectroscopy was used to study heating and Cd2+ ion induced conformational transitions in double-stranded poly(rA) poly(rU) (AU) and its components (single-stranded poly(rA) and poly(rU)) in buffer solutions (pH 6.5) containing 0.03M Na+. It was revealed that with the rise of the cadmium ion concentration single-stranded polynucleotides undergo a number of conformational transitions, the character of which is conditioned with the dominant type of the metal complex. The phase diagram of poly(rA)-poly(rU) measured in solution with cadmium ions at 0.03M Na+ is compared with diagrams for AU+Cd2+ at 0.1M Na+ and AU+Mg2+ at 0.01M Na+. It was shown that at low metal concentrations the helix-coil transition in AU is of one-phase cooperative character. When some critical concentration [Mtcr] is reached, the 2—>1 transition is replaced with the disproportional 2AU—>A2U+poly(rA) (2—>3) transition after which the disruption of the triple helix (3—>1) takes place. The [Mtcr] value depends on the sodium ion content in solution: the more the Na+ concentration, the higher concentration of divalent ions corresponds to the triple point. A series of Na+ concentrations ([Na+]= 0.01, 0.03 and 0.1 М) presets such [Mtcr] positions as 4•10-5, 6•10-5 and 10-4М that represent a linear dependence [Mtcr] = f([Na+]) in the double logarithmic scale.The cadmium binding to poly(rA) bases results in the narrowing of the existence region of triple helices (in comparison with that of Mg2+ ions). The Cd2+ ion interaction with O4 of uracil causes the further destabilization of the triple helix.

Downloads

Download data is not yet available.

Author Biographies

G. O. Gladchenko, Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

Yu. P. Blagoi, Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

V. A. Sorokin, Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

V. A. Valeev, Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

E. A. Andrus', Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

V. A. Karachevtsev, Institute for Low Temperature Physics & Engineering, NASU

47 Lenin Ave, Kharkov , 61103, Ukraine

References

L’Azou B, Dubus I, Ohayon-Courtes C, Labouyrie J, Perez L, Pouvreau L, et al. Toxicology. 2002;179:233-45.

Hossain Z, Huq F. J. Inorg. Biochem. 2002;90:97-105.

Hartwig A. Pure Appl. Chem. 2000;72:1007-14.

Kowara R, Karaczyn AA, Fivash M.J.Jr, Kasprzak KS. Chem. Res. Toxicol. 2002;15:319-25.

Joseph P, Lei YX, Whong WZ, Ong TM. J. Biol. Chem. 2002;277:6131-6.

Lei YX, Chen JK, Wu ZL. Teratog. Carcinog. Mutagen. 2002;22:377-83.

Giovannangeli C, Rougee M, Garestier T, Thuong NT, Helene C. Proc. Natl. Acad. Sci. USA. 1992;89:8631-5.

Praseuth D, Guieysse AL, Helene C. Biochim. Biophyss. Acta. 1999;1489:181-206.

Felsenfeld G, Davies DR, Rich A. J. Amer. Chem. Soc. 1957;79:2023-4.

Zenger V. Printcipy strukturnoi organizatcii nukleinovykh kislot. Moskva:Mir; 1987. 584p. (in Russian)

Krakauer H, Sturtevant JM. Biopolymers. 1968;6:491-512.

Krakauer H. Biochemistry. 1974;13:2579-89.

Stevens ChL, Felsenfeld G. Biopolymers. 1964;2:293-314.

Yang L, Keiderling TA. Biopolymers. 1993;33:315-27.

Andrushchenko V, Blagoi Yu, van de Sande JH, Wieser H. J. Biomol. Struct. Dynam. 2002;19:889-906.

Sehlstedt U, Aich P, Bergman J, Vallberg H, Norden B, Graslund A. J. Mol. Biol. 1998;278:31-56.

Sorokin VA, Valeev VA, Gladchenko GO, Degtiar MV, Blagoi YuP. Macromol. Biosci. 2001;1:191-203.

Sorokin VA, Valeev VA, Gladchenko GO, Degtiar MV, Karachevtsev VA, Blagoi YuP. Int. J. of Biol. Macromol. 2003;31:223-33.

Sorokin VA, Valeev VA, Gladchenko GO, Degtiar MV, Rubina AYu, Andrus EA, et al. Biophysical Bulletin. 2001;2(9):45-50.

Blagoi IuP, Galkin VL, Gladchenko GO, Kornilova SV, Sorokin VA, Shkorbatov AG. Metallokompleksy nukleinovykh kislot v rastvorakh. Kiev:Naukova dumka; 1991. 270p. (in Russian)

Aoki K. Nucleosides, Nucleotides and Metal Ions. Elsevier: Amsterdam, Oxford, New York; 1988. P. 457-90.

Gellert RW, Bau R, Martin RB, Mariam YaH. Metal ions in biological system. 1979;8:chapt. 1-2.

Sigel H, Massoud SS, Corfu NA. J. Am. Chem. Soc. 1994;116:2958-71.

Katoh Y, Kuninaka A, Yoshino H. Agr. Biol. Chem. 1975;39(10):1957-62.

Shin YA. Biopolymers. 1973;12:2459-75.

Post CB, Zimm BH. Biopolymers. 1982;21:2133-7.

Yamasaki Yu, Teramoto Y, Yoshikawa K. Biophysical J. 2001;80:2823-32.

Bloomfield VA. Biopolymers. 1997;44:269-82.

Diebler H, Secco F, Venturini M. Biophys. Chem. 1987;26:193-205.

Blagoi Yu, Gladchenko G, Nafie LA, Freedman TB, Sorokin V, Valeev V, et al. Biopolymers. 2005;78:275-86.

Porschke D. Biopolymers. 1971;10:1989-2013.
Published
2018-12-06
Cited
How to Cite
Gladchenko, G. O., Blagoi, Y. P., Sorokin, V. A., Valeev, V. A., Andrus’, E. A., & Karachevtsev, V. A. (2018). Cadmium ion effects on phase equilibrium in double-stranded poly(rA) poly(rU). Biophysical Bulletin, 1(18), 14-22. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/12615