Вплив калорійно обмеженої дієти на інсулін-індуковане поглинання глюкози та вміст ліпідів в скелетній м'язовій тканині 24-місячних щурів

  • Н. О. Бабенко
  • О. С. Мілько
Ключові слова: камбалоподібний м'яз; довгий розгинач пальців; калорійно обмежена дієта; поглинання глюкози; фосфатидилхолін; фосфатидилетаноламін; вільні жирні кислоти; триацилгліцероли; діацилгліцероли; холестерин

Анотація

Метою даної роботи було дослідження впливу калорійно обмеженої дієти (КОД) на інсулін-індуковане поглинання глюкози та вміст нейтральних ліпідів й фосфоліпідів в довгому розгиначі пальців (ДРП) й камбалоподібному м'язі (КМ) 24-місячних щурів. Встановлено, що при дії КОД в КМ спостерігається підвищення вмісту фосфатидилхоліну та фосфатидилетаноламіну, а також зниження рівнів вільних жирних кислот, триацилгліцеролів, діацилгліцеролів й холестерину. Було відмічено, що КОД викликає підвищення інсулін-індукованого поглинання глюкози в ДРП дослідних щурів в порівнянні з контролем. Застосування КОД призводить до модуляції інсулін-стимульованого поглинання глюкози в скелетних м'язах щурів, паралельно знижуючи вміст ліпідів, що беруть участь в порушенні трансдукції сигналу інсуліну. Отримані результати можуть засвідчувати протекторну роль КОД при вік-індукованих порушеннях сигналінгу інсуліну та вмісту нейтральних ліпідів і фосфоліпідів в тканинах-мішенях дії гормону.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Бабенко Н.А., Тимофийчук O.А. Возрастные особенности содержания фосфолипидов, свободных жирных кислот и нейтральных липидов в сыворотке крови и скелетной мускулатуре самцов крыс линии Wistar // Вісн. Харк. ун-ту ім. В.Н.Каразіна. Серія: біологія. – 2012. – Вып.15, №1008. – С. 192–202. /Babenko N.A., Timofiychuk O.A. Vozrastnyye osobennosti soderzhaniya fosfolipidov, svobodnyykh zhirnykh kislot i neytralnykh lipidov v syvorotke krovi i skeletnoy muskulature samtsov krys linii Wistar // Visn. Khark. un-tu im. V.N.Karazina. Seriya: biologiya. – 2012. – Vyp.15, №1008. – S. 192–202./

Кейтс М. Техника липидологии. – М.: Мир, 1975. – 322с. /Keyts M. Tekhnika lipidologii. – M.: Mir, 1975. – 322s./

Никитин В.Н., Бабенко Н.А., Басанец Л.М. Липиды печени белых крыс разного возраста в норме и при периодической калорийно недостаточной диете // Вестн. Харьк. ун-та. – 1988. – №313: Пробл. физиол. и биохимии, онтогенеза и физиол. генетики. – С. 3–5. /Nikitin V.N., Babenko N.A., Basanets L.M. Lipidy pecheni belykh krys raznogo vozrasta v norme i pri periodicheskoy kaloriyno nedostatochnoy diyete // Vestn. Khark. un-ta. – 1988. – №313: Probl. fiziol. i bioлhimii, ontogeneza i fiziol. genetiki. – S. 3–5./

Никитин В.Н., Бабенко Н.А. О роли липидов в механизме действия калорийно ограниченной диеты на продолжительность жизни // Геронтология и гериатрия. Превентивная геронтология и гериатрия. – К., 1990. – С. 41–48. /Nikitin V.N., Babenko N.A. O roli lipidov v mekhanizme deystviya kaloriyno ogranichennoy diyety na prodolzhitelnost zhizni // Gerontologiya i geriatriya. Preventivnaya gerontologiya i geriatriya. – K., 1990. – S. 41–48./

Никитин В.Н. О биохимических и эндокринных механизмах экспериментального продления жизни // Проблемы возрастной физиологии, биохимии и биофизики. – К.: Наукова думка, 1974. – С. 186–211. /Nikitin V.N. O biokhimicheskikh i endokrinnykh mekhanizmakh eksperimentalnogo prodleniya zhizni // Problemy vozrastnoy fiziologii, biokhimii i biofiziki. – K.: Naukova dumka, 1974. – S. 186–211./

Шахова О.Г., Краснікова О.М., Бабенко Н.О. Вплив хронічного обмеження калорійності раціону на вікові особливості орієнтувально-дослідницької поведінки щурів // Фізіол. журн. – 2012. – Т.58, №1. – С. 61–67. /Shakhova O.G., Krasnikova O.M., Babenko N.O. Vplyv khronichnogo obmezhennya kaloriynosti ratsionu na vikovi osoblyvosti oriyentuvalno-doslidnytskoi povedinky shchuriv // Fiziol. zhurn. – 2012. – T.58, №1. – S. 61–67./

Adibhatla R.M., Hatcher J.F., Larsen E.C. et al. CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP: phosphocholine cytidylyltransferase after stroke // J. Biol. Chem. – 2006. – Vol.281, №10. – P. 6718–6725.

Babenko N.A., Shakhova E.G. Effects of a calorie-restricted diet on the content of phospholipids in the brain and cognitive functions in rats // Neurophysiology. – 2012. – Vol.44, №3. – P. 201–207.

Belfort R., Mandarino L., Kashyap S. et al. Dose-response effect of elevated plasma free fatty acid on insulin signaling // Diabetes. – 2005. – Vol.54, №6. – P. 1640–1648.

Bertolotti M., Gabbi C., Anzivino C. et al. Age-related changes in bile acid synthesis and hepatic nuclear receptor expression // Eur. J. Clin. Invest. – 2007. – Vol.37, №6. – P. 501–508.

Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification // Can. J. Biochem. Physiol. – 1959. – Vol.37, №8. – P. 911–917.

Boden G., Lebed B., Schatz M. et al. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects // Diabetes. – 2001. – Vol.50, №7. – P. 1612–1617.

Bonadonna R.C., Groop L.C., Simonson D.C. et al. Free fatty acid and glucose metabolism in human aging: evidence for operation of the Randle cycle // Am. J. Physiol. – 1994. – Vol.266, №3. – P. 501–509.

Bosch M., Marí M., Herms A. Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility // Curr. Biol. – 2011. – Vol.21, №8. – P. 681–686.

Bruss M., Khambatta C.F., Ruby M.A. et al. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates // Am. J. Physiol. Endocrinol. Metab. – 2010. – Vol.298, №1. – P. 108–116.

De Solís A.J., Fernández-Agulló T., García-SanFrutos M. et al. Impairment of skeletal muscle insulin action with aging in Wistar rats: role of leptin and caloric restriction // Mech. Ageing Dev. – 2012. – Vol.133, №5. – P. 306–316.

DeFronzo R.A., Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes // Diabetes Care. – 2009. – Vol.32, №2. – P. 157–163.

Deng Y.T., Chang T.W., Lee M.S. et al. Suppression of free fatty acid-induced insulin resistance by phytopolyphenols in C2C12 mouse skeletal muscle cells // J. Agric. Food Chem. – 2012. – Vol.60, №4. – P. 1059–1066.

Einstein F.H., Huffman D.M., Fishman S. et al. Aging per se increases the susceptibility to free fatty acid-induced insulin resistance // J. Gerontol. A Biol. Sci. Med. Sci. – 2010. – Vol.65, №8. – P. 800–808.

Fritsche L., Neukamm S.S., Lehmann R. et al. Insulin-induced serine phosphorylation of IRS-2 via ERK1/2 and mTOR: studies on the function of Ser675 and Ser907 // Am. J. Physiol. Endocrinol. Metab. – 2011. – Vol.300, №5. – P. 824–836.

Fullerton M.D., Bakovic M. Complementation of the metabolic defect in CTP:phosphoethanolamine cytidylyltransferase (Pcyt2)-deficient primary hepatocytes // Metabolism. – 2010. – Vol.59. – P. 1691–1700.

Fullerton M.D., Hakimuddin F., Bonen A. et al. The development of a metabolic disease phenotype in CTP:phosphoethanolamine cytidylyltransferase-deficient mice // J. Biol. Chem. – 2009. – Vol.284. – P. 25704–25713.

Funai K., Song H., Yin L. et al. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling // J. Clin. Invest. – 2013. – Vol.123, №3. – P. 1229–1240.

García-San Frutos M., Fernández-Agulló T., Carrascosa J.M. et al. Involvement of protein tyrosine phosphatases and inflammation in hypothalamic insulin resistance associated with ageing: effect of caloric restriction // Mech. Ageing Dev. – 2012. – Vol.133, №7. – P. 489–497.

Gerhart-Hines Z., Rodgers J.T., Bare O. et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha // EMBO J. – 2007. – Vol.26, №7. – P. 1913–1923.

Gibellini F., Smith T.K. The Kennedy pathway – de novo synthesis of phosphatidylethanolamine and phosphatidylcholine // IUBMB Life. – 2010. – Vol.62. – P. 414–428.

Gondret F., Lebas F., Bonneau M. Restricted feed intake during fattening reduces intramuscular lipid deposition without modifying muscle fiber characteristics in rabbits // J. Nutr. – 2000. – Vol.130, №2. – P. 228–233.

Holland W.L., Bikman B.T., Summers S.A. et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice // J. Clin. Invest. – 2011. – Vol.121, №5. – P. 1858–1870.

Houweling M., Klein W., Geelen M.J. Regulation of phosphatidylcholine and phosphatidylethanolamine synthesis in rat hepatocytes by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) // Biochem. J. – 2002. – Vol.362. – P. 97–104.

Jiang T., Liebman S.E., Lucia M.S. Calorie restriction modulates renal expression of sterol regulatory element binding proteins, lipid accumulation, and age-related renal disease // J. Am. Soc. Nephrol. – 2005. – Vol.16, №8. – P. 2385–2394.

Johannsen D.L., Conley K.E., Bajpeyi S. et al. Ectopic lipid accumulation and reduced glucose tolerance in elderly adults are accompanied by altered skeletal muscle mitochondrial activity // J. Clin. Endocrinol. Metab. – 2012. – Vol.97, №1. – P. 242–250.

Kinoshita M., Oikawa S., Hayasaka K. et al. Age-related increases in plasma phosphatidylcholine hydroperoxide concentrations in control subjects and patients with hyperlipidemia // Clin. Chem. – 2000. – Vol.46, №6. – P. 822–828.

Kunihiro S., Akihiko Y. Novel intriguing strategies attenuating to sarcopenia // Journal of Aging Research. – 2012. – Vol.2012. – P. 1–11.

Kwon J. H., Lee J. H., Kim K.S. et al. Regulation of cytosolic phospholipase A2 phosphorylation by proteolytic cleavage of annexin A1 in activated mast cells // J. Immunol. – 2012. – Vol.188, №11. – P. 5665–5573.

Leick L., Fentz J., Bienso R.S. et al. PGC-1α is required for AICAR-induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle // Am. J. Physiol. Endocrinol. Metab. – 2010. – Vol.299, №3. – P. 456–465.

Liang H., Tantiwong P., Sriwijitkamol A. et al. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects // J. Physiol. – 2013. – Vol.591, №11. – P. 2897–2909.

Lowry O.N., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent // J. Biol. Chem. – 1951. – Vol.193. – P. 365–375.

Mahley R.W., Hui D.Y., Innerarity T.L. et al. Two independent lipoprotein receptors on hepatic membranes of dog, swine, and man: apo-B, E and apo-E receptors // J. Clin. Invest. – 1981. – Vol.68. – P. 1197–1206.

March J.B., Weinstein D.B. Simple charring method for determination of lipids // J. Lipid Res. – 1966. – Vol.7, №4. – P. 574–580.

Masternak M.M., Panici J.A., Bonkowski J.A. et al. Insulin sensitivity as a key mediator of growth hormone actions on longevity // J. Gerontol. A Biol. Sci. Med. Sci. – 2009. – Vol.64, №5. – P. 516–521.

Montell E., Turini M., Marotta M. et al. DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells // Am. J. Physiol. Endocrinol. Metab. – 2001. – Vol.280, №2. – P. 229–237.

Morselli E., Maiuri M.C., Markaki M. et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy // Cell Death Dis. – 2010. – Vol.1. – P. 1–10.

Nisoli E., Tonello C., Cardile A. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS // Science. – 2005. – Vol.310. – P. 314–317.

Omodei D., Fontana L. Calorie restriction and prevention of age-associated chronic disease // FEBS Lett. – 2011. – Vol.585, №11. – P. 1537–1542.

Payne A.M., Dodd S.L., Leeuwenburgh C. Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space // J. Appl. Physiol. – 2003. – Vol.95, №6. – P. 2554–2562.

Petkova D.H., Momchilova A.B., Koumanov K.S. Age-related changes in rat liver plasma membrane phospholipase A2 activity // Exp. Gerontol. – 1986. – Vol.21, №3. – P. 187–193.

Prasannarong M., Vichaiwong K., Saengsirisuwan V. Calorie restriction prevents the development of insulin resistance and impaired insulin signaling in skeletal muscle of ovariectomized rats // Biochim. Biophys. Acta. – 2012. – Vol.1822, №6. – P. 1051–1061.

Rocha J.S., Bonkowski M.S., Masternak M.M. et al. Effects of adult onset mild calorie restriction on weight of reproductive organs, plasma parameters and gene expression in male mice // Anim. Reprod. – 2012. – Vol.9, № 1. – P. 40–51.

Samuel V.T., Shulman G.I. Mechanisms for insulin resistance: common threads and missing links // Cell. – 2012. – Vol.148, №5. – P. 852–871.

Sayer A. A., Syddall H.E., Dennison E.M. et al. Grip strength and the metabolic syndrome: findings from the Hertfordshire Cohort Study // QJM. – 2007. – Vol.100, №11. – P. 707–713.

Schmitz-Peiffer C., Browne C.L., Oakes N.D. et al. Alterations in the expression and cellular localization of protein kinase C isozymes epsilon and theta are associated with insulin resistance in skeletal muscle of the highfat-fed rat // Diabetes. – 1997. – Vol.46. – P. 169–178.

Sharma N., Bhat A.D., Kassa A.D. et al. Improved insulin sensitivity with calorie restriction does not require reduced JNK1/2, p38, or ERK1/2 phosphorylation in skeletal muscle of 9-month-old rats // Am. J. Physiol. Regul. Integr. Comp. Physiol. – 2012. – Vol.302, №1. – P. 126–136.

Swiss V.A., Nguyen T., Dugas J. et al. Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation // PLoS One – 2011. – Vol.6, №4. – P.e18088.

Tchkonia T., Morbeck D.E., Von Zglinicki T. et al. Fat tissue, aging, and cellular senescence // Aging Cell. – 2010. – Vol.9, №5. – P. 667–684.

Toth M.J., Tchernof A. Lipid metabolism in the elderly // Eur. J. Clin. Nutr. – 2000. – Vol.54, №3. – P. 121–125.

Tsunekawa S., Demozay D., Briaud I. et al. FoxO feedback control of basal IRS-2 expression in pancreatic beta-cells is distinct from that in hepatocytes // Diabetes. – 2011. – Vol.60. – P. 2883–2891.

Vescovo G., Ceconi C., Bernocchi P. et al. Skeletal muscle myosin heavy chain expression in rats with monocrotaline-induced cardiac hypertrophy and failure. Relation to blood flow and degree of muscle atrophy // Cardiovasc. Res. – 1998. – Vol.39, №1. – P. 233–241.

Walker A.K., Jacobs R.L., Watts J.L. et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans // Cell. – 2011. – Vol.147. – P. 840–852.

Wang Z.Q., Floyd Z.E., Qin J. et al. Modulation of skeletal muscle insulin signaling with chronic caloric restriction in cynomolgus monkeys // Diabetes. – 2009. – Vol.58, №7. – P. 1488–1498.

Wang Z.W., Pan W.T., Lee Y. et al. The role of leptin resistance in the lipid abnormalities of aging // FASEB J. – 2001. – Vol.15, №1. – P. 108–114.

Wen H., Gris D., Lei Y. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling // Nat. Immunol. – 2011. – Vol.12. – P. 408–415.

Wilsey J., Scarpace P.J. Caloric restriction reverses the deficits in leptin receptor protein and leptin signaling capacity associated with diet-induced obesity: role of leptin in the regulation of hypothalamic long-form leptin receptor expression // J. Endocrinol. – 2004. – Vol.181, №2. – P. 297–306.

Zheng Y., Zhang W., Pendleton E. et al. Improved insulin sensitivity by calorie restriction is associated with reduction of ERK and p70S6K activities in the liver of obese Zucker rats // J. Endocrinol. – 2009. – Vol.203, №3. – P. 337–347.

Опубліковано
2013-05-22
Цитовано
Як цитувати
Бабенко, Н. О., & Мілько, О. С. (2013). Вплив калорійно обмеженої дієти на інсулін-індуковане поглинання глюкози та вміст ліпідів в скелетній м’язовій тканині 24-місячних щурів. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Біологія», 18(1079), 151-160. вилучено із https://periodicals.karazin.ua/biology/article/view/13755
Розділ
ФІЗІОЛОГІЯ ЛЮДИНИ ТА ТВАРИН