Вплив калорійно обмеженої дієти на інсулін-індуковане поглинання глюкози та вміст ліпідів в скелетній м'язовій тканині 24-місячних щурів
Анотація
Метою даної роботи було дослідження впливу калорійно обмеженої дієти (КОД) на інсулін-індуковане поглинання глюкози та вміст нейтральних ліпідів й фосфоліпідів в довгому розгиначі пальців (ДРП) й камбалоподібному м'язі (КМ) 24-місячних щурів. Встановлено, що при дії КОД в КМ спостерігається підвищення вмісту фосфатидилхоліну та фосфатидилетаноламіну, а також зниження рівнів вільних жирних кислот, триацилгліцеролів, діацилгліцеролів й холестерину. Було відмічено, що КОД викликає підвищення інсулін-індукованого поглинання глюкози в ДРП дослідних щурів в порівнянні з контролем. Застосування КОД призводить до модуляції інсулін-стимульованого поглинання глюкози в скелетних м'язах щурів, паралельно знижуючи вміст ліпідів, що беруть участь в порушенні трансдукції сигналу інсуліну. Отримані результати можуть засвідчувати протекторну роль КОД при вік-індукованих порушеннях сигналінгу інсуліну та вмісту нейтральних ліпідів і фосфоліпідів в тканинах-мішенях дії гормону.
Завантаження
Посилання
Бабенко Н.А., Тимофийчук O.А. Возрастные особенности содержания фосфолипидов, свободных жирных кислот и нейтральных липидов в сыворотке крови и скелетной мускулатуре самцов крыс линии Wistar // Вісн. Харк. ун-ту ім. В.Н.Каразіна. Серія: біологія. – 2012. – Вып.15, №1008. – С. 192–202. /Babenko N.A., Timofiychuk O.A. Vozrastnyye osobennosti soderzhaniya fosfolipidov, svobodnyykh zhirnykh kislot i neytralnykh lipidov v syvorotke krovi i skeletnoy muskulature samtsov krys linii Wistar // Visn. Khark. un-tu im. V.N.Karazina. Seriya: biologiya. – 2012. – Vyp.15, №1008. – S. 192–202./
Кейтс М. Техника липидологии. – М.: Мир, 1975. – 322с. /Keyts M. Tekhnika lipidologii. – M.: Mir, 1975. – 322s./
Никитин В.Н., Бабенко Н.А., Басанец Л.М. Липиды печени белых крыс разного возраста в норме и при периодической калорийно недостаточной диете // Вестн. Харьк. ун-та. – 1988. – №313: Пробл. физиол. и биохимии, онтогенеза и физиол. генетики. – С. 3–5. /Nikitin V.N., Babenko N.A., Basanets L.M. Lipidy pecheni belykh krys raznogo vozrasta v norme i pri periodicheskoy kaloriyno nedostatochnoy diyete // Vestn. Khark. un-ta. – 1988. – №313: Probl. fiziol. i bioлhimii, ontogeneza i fiziol. genetiki. – S. 3–5./
Никитин В.Н., Бабенко Н.А. О роли липидов в механизме действия калорийно ограниченной диеты на продолжительность жизни // Геронтология и гериатрия. Превентивная геронтология и гериатрия. – К., 1990. – С. 41–48. /Nikitin V.N., Babenko N.A. O roli lipidov v mekhanizme deystviya kaloriyno ogranichennoy diyety na prodolzhitelnost zhizni // Gerontologiya i geriatriya. Preventivnaya gerontologiya i geriatriya. – K., 1990. – S. 41–48./
Никитин В.Н. О биохимических и эндокринных механизмах экспериментального продления жизни // Проблемы возрастной физиологии, биохимии и биофизики. – К.: Наукова думка, 1974. – С. 186–211. /Nikitin V.N. O biokhimicheskikh i endokrinnykh mekhanizmakh eksperimentalnogo prodleniya zhizni // Problemy vozrastnoy fiziologii, biokhimii i biofiziki. – K.: Naukova dumka, 1974. – S. 186–211./
Шахова О.Г., Краснікова О.М., Бабенко Н.О. Вплив хронічного обмеження калорійності раціону на вікові особливості орієнтувально-дослідницької поведінки щурів // Фізіол. журн. – 2012. – Т.58, №1. – С. 61–67. /Shakhova O.G., Krasnikova O.M., Babenko N.O. Vplyv khronichnogo obmezhennya kaloriynosti ratsionu na vikovi osoblyvosti oriyentuvalno-doslidnytskoi povedinky shchuriv // Fiziol. zhurn. – 2012. – T.58, №1. – S. 61–67./
Adibhatla R.M., Hatcher J.F., Larsen E.C. et al. CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP: phosphocholine cytidylyltransferase after stroke // J. Biol. Chem. – 2006. – Vol.281, №10. – P. 6718–6725.
Babenko N.A., Shakhova E.G. Effects of a calorie-restricted diet on the content of phospholipids in the brain and cognitive functions in rats // Neurophysiology. – 2012. – Vol.44, №3. – P. 201–207.
Belfort R., Mandarino L., Kashyap S. et al. Dose-response effect of elevated plasma free fatty acid on insulin signaling // Diabetes. – 2005. – Vol.54, №6. – P. 1640–1648.
Bertolotti M., Gabbi C., Anzivino C. et al. Age-related changes in bile acid synthesis and hepatic nuclear receptor expression // Eur. J. Clin. Invest. – 2007. – Vol.37, №6. – P. 501–508.
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification // Can. J. Biochem. Physiol. – 1959. – Vol.37, №8. – P. 911–917.
Boden G., Lebed B., Schatz M. et al. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects // Diabetes. – 2001. – Vol.50, №7. – P. 1612–1617.
Bonadonna R.C., Groop L.C., Simonson D.C. et al. Free fatty acid and glucose metabolism in human aging: evidence for operation of the Randle cycle // Am. J. Physiol. – 1994. – Vol.266, №3. – P. 501–509.
Bosch M., Marí M., Herms A. Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility // Curr. Biol. – 2011. – Vol.21, №8. – P. 681–686.
Bruss M., Khambatta C.F., Ruby M.A. et al. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates // Am. J. Physiol. Endocrinol. Metab. – 2010. – Vol.298, №1. – P. 108–116.
De Solís A.J., Fernández-Agulló T., García-SanFrutos M. et al. Impairment of skeletal muscle insulin action with aging in Wistar rats: role of leptin and caloric restriction // Mech. Ageing Dev. – 2012. – Vol.133, №5. – P. 306–316.
DeFronzo R.A., Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes // Diabetes Care. – 2009. – Vol.32, №2. – P. 157–163.
Deng Y.T., Chang T.W., Lee M.S. et al. Suppression of free fatty acid-induced insulin resistance by phytopolyphenols in C2C12 mouse skeletal muscle cells // J. Agric. Food Chem. – 2012. – Vol.60, №4. – P. 1059–1066.
Einstein F.H., Huffman D.M., Fishman S. et al. Aging per se increases the susceptibility to free fatty acid-induced insulin resistance // J. Gerontol. A Biol. Sci. Med. Sci. – 2010. – Vol.65, №8. – P. 800–808.
Fritsche L., Neukamm S.S., Lehmann R. et al. Insulin-induced serine phosphorylation of IRS-2 via ERK1/2 and mTOR: studies on the function of Ser675 and Ser907 // Am. J. Physiol. Endocrinol. Metab. – 2011. – Vol.300, №5. – P. 824–836.
Fullerton M.D., Bakovic M. Complementation of the metabolic defect in CTP:phosphoethanolamine cytidylyltransferase (Pcyt2)-deficient primary hepatocytes // Metabolism. – 2010. – Vol.59. – P. 1691–1700.
Fullerton M.D., Hakimuddin F., Bonen A. et al. The development of a metabolic disease phenotype in CTP:phosphoethanolamine cytidylyltransferase-deficient mice // J. Biol. Chem. – 2009. – Vol.284. – P. 25704–25713.
Funai K., Song H., Yin L. et al. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling // J. Clin. Invest. – 2013. – Vol.123, №3. – P. 1229–1240.
García-San Frutos M., Fernández-Agulló T., Carrascosa J.M. et al. Involvement of protein tyrosine phosphatases and inflammation in hypothalamic insulin resistance associated with ageing: effect of caloric restriction // Mech. Ageing Dev. – 2012. – Vol.133, №7. – P. 489–497.
Gerhart-Hines Z., Rodgers J.T., Bare O. et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha // EMBO J. – 2007. – Vol.26, №7. – P. 1913–1923.
Gibellini F., Smith T.K. The Kennedy pathway – de novo synthesis of phosphatidylethanolamine and phosphatidylcholine // IUBMB Life. – 2010. – Vol.62. – P. 414–428.
Gondret F., Lebas F., Bonneau M. Restricted feed intake during fattening reduces intramuscular lipid deposition without modifying muscle fiber characteristics in rabbits // J. Nutr. – 2000. – Vol.130, №2. – P. 228–233.
Holland W.L., Bikman B.T., Summers S.A. et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice // J. Clin. Invest. – 2011. – Vol.121, №5. – P. 1858–1870.
Houweling M., Klein W., Geelen M.J. Regulation of phosphatidylcholine and phosphatidylethanolamine synthesis in rat hepatocytes by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) // Biochem. J. – 2002. – Vol.362. – P. 97–104.
Jiang T., Liebman S.E., Lucia M.S. Calorie restriction modulates renal expression of sterol regulatory element binding proteins, lipid accumulation, and age-related renal disease // J. Am. Soc. Nephrol. – 2005. – Vol.16, №8. – P. 2385–2394.
Johannsen D.L., Conley K.E., Bajpeyi S. et al. Ectopic lipid accumulation and reduced glucose tolerance in elderly adults are accompanied by altered skeletal muscle mitochondrial activity // J. Clin. Endocrinol. Metab. – 2012. – Vol.97, №1. – P. 242–250.
Kinoshita M., Oikawa S., Hayasaka K. et al. Age-related increases in plasma phosphatidylcholine hydroperoxide concentrations in control subjects and patients with hyperlipidemia // Clin. Chem. – 2000. – Vol.46, №6. – P. 822–828.
Kunihiro S., Akihiko Y. Novel intriguing strategies attenuating to sarcopenia // Journal of Aging Research. – 2012. – Vol.2012. – P. 1–11.
Kwon J. H., Lee J. H., Kim K.S. et al. Regulation of cytosolic phospholipase A2 phosphorylation by proteolytic cleavage of annexin A1 in activated mast cells // J. Immunol. – 2012. – Vol.188, №11. – P. 5665–5573.
Leick L., Fentz J., Bienso R.S. et al. PGC-1α is required for AICAR-induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle // Am. J. Physiol. Endocrinol. Metab. – 2010. – Vol.299, №3. – P. 456–465.
Liang H., Tantiwong P., Sriwijitkamol A. et al. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects // J. Physiol. – 2013. – Vol.591, №11. – P. 2897–2909.
Lowry O.N., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent // J. Biol. Chem. – 1951. – Vol.193. – P. 365–375.
Mahley R.W., Hui D.Y., Innerarity T.L. et al. Two independent lipoprotein receptors on hepatic membranes of dog, swine, and man: apo-B, E and apo-E receptors // J. Clin. Invest. – 1981. – Vol.68. – P. 1197–1206.
March J.B., Weinstein D.B. Simple charring method for determination of lipids // J. Lipid Res. – 1966. – Vol.7, №4. – P. 574–580.
Masternak M.M., Panici J.A., Bonkowski J.A. et al. Insulin sensitivity as a key mediator of growth hormone actions on longevity // J. Gerontol. A Biol. Sci. Med. Sci. – 2009. – Vol.64, №5. – P. 516–521.
Montell E., Turini M., Marotta M. et al. DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells // Am. J. Physiol. Endocrinol. Metab. – 2001. – Vol.280, №2. – P. 229–237.
Morselli E., Maiuri M.C., Markaki M. et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy // Cell Death Dis. – 2010. – Vol.1. – P. 1–10.
Nisoli E., Tonello C., Cardile A. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS // Science. – 2005. – Vol.310. – P. 314–317.
Omodei D., Fontana L. Calorie restriction and prevention of age-associated chronic disease // FEBS Lett. – 2011. – Vol.585, №11. – P. 1537–1542.
Payne A.M., Dodd S.L., Leeuwenburgh C. Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space // J. Appl. Physiol. – 2003. – Vol.95, №6. – P. 2554–2562.
Petkova D.H., Momchilova A.B., Koumanov K.S. Age-related changes in rat liver plasma membrane phospholipase A2 activity // Exp. Gerontol. – 1986. – Vol.21, №3. – P. 187–193.
Prasannarong M., Vichaiwong K., Saengsirisuwan V. Calorie restriction prevents the development of insulin resistance and impaired insulin signaling in skeletal muscle of ovariectomized rats // Biochim. Biophys. Acta. – 2012. – Vol.1822, №6. – P. 1051–1061.
Rocha J.S., Bonkowski M.S., Masternak M.M. et al. Effects of adult onset mild calorie restriction on weight of reproductive organs, plasma parameters and gene expression in male mice // Anim. Reprod. – 2012. – Vol.9, № 1. – P. 40–51.
Samuel V.T., Shulman G.I. Mechanisms for insulin resistance: common threads and missing links // Cell. – 2012. – Vol.148, №5. – P. 852–871.
Sayer A. A., Syddall H.E., Dennison E.M. et al. Grip strength and the metabolic syndrome: findings from the Hertfordshire Cohort Study // QJM. – 2007. – Vol.100, №11. – P. 707–713.
Schmitz-Peiffer C., Browne C.L., Oakes N.D. et al. Alterations in the expression and cellular localization of protein kinase C isozymes epsilon and theta are associated with insulin resistance in skeletal muscle of the highfat-fed rat // Diabetes. – 1997. – Vol.46. – P. 169–178.
Sharma N., Bhat A.D., Kassa A.D. et al. Improved insulin sensitivity with calorie restriction does not require reduced JNK1/2, p38, or ERK1/2 phosphorylation in skeletal muscle of 9-month-old rats // Am. J. Physiol. Regul. Integr. Comp. Physiol. – 2012. – Vol.302, №1. – P. 126–136.
Swiss V.A., Nguyen T., Dugas J. et al. Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation // PLoS One – 2011. – Vol.6, №4. – P.e18088.
Tchkonia T., Morbeck D.E., Von Zglinicki T. et al. Fat tissue, aging, and cellular senescence // Aging Cell. – 2010. – Vol.9, №5. – P. 667–684.
Toth M.J., Tchernof A. Lipid metabolism in the elderly // Eur. J. Clin. Nutr. – 2000. – Vol.54, №3. – P. 121–125.
Tsunekawa S., Demozay D., Briaud I. et al. FoxO feedback control of basal IRS-2 expression in pancreatic beta-cells is distinct from that in hepatocytes // Diabetes. – 2011. – Vol.60. – P. 2883–2891.
Vescovo G., Ceconi C., Bernocchi P. et al. Skeletal muscle myosin heavy chain expression in rats with monocrotaline-induced cardiac hypertrophy and failure. Relation to blood flow and degree of muscle atrophy // Cardiovasc. Res. – 1998. – Vol.39, №1. – P. 233–241.
Walker A.K., Jacobs R.L., Watts J.L. et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans // Cell. – 2011. – Vol.147. – P. 840–852.
Wang Z.Q., Floyd Z.E., Qin J. et al. Modulation of skeletal muscle insulin signaling with chronic caloric restriction in cynomolgus monkeys // Diabetes. – 2009. – Vol.58, №7. – P. 1488–1498.
Wang Z.W., Pan W.T., Lee Y. et al. The role of leptin resistance in the lipid abnormalities of aging // FASEB J. – 2001. – Vol.15, №1. – P. 108–114.
Wen H., Gris D., Lei Y. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling // Nat. Immunol. – 2011. – Vol.12. – P. 408–415.
Wilsey J., Scarpace P.J. Caloric restriction reverses the deficits in leptin receptor protein and leptin signaling capacity associated with diet-induced obesity: role of leptin in the regulation of hypothalamic long-form leptin receptor expression // J. Endocrinol. – 2004. – Vol.181, №2. – P. 297–306.
Zheng Y., Zhang W., Pendleton E. et al. Improved insulin sensitivity by calorie restriction is associated with reduction of ERK and p70S6K activities in the liver of obese Zucker rats // J. Endocrinol. – 2009. – Vol.203, №3. – P. 337–347.
Автори залишають за собою право на авторство своєї роботи та передають журналу право першої її публікації на умовах ліцензії Creative Commons Attribution License 4.0 International (CC BY 4.0), яка дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи.