Нейрозапалення у біохімічних механізмах амілоїдозу

  • В. Соколік Інститут неврології, психіатрії та наркології НАМН України https://orcid.org/0000-0001-6829-2300
Ключові слова: β-амілоїдний пептид; нейрозапалення; цитокіни; амілоїдоз

Анотація

В обзорі представлено аналіз сучасного рівня розуміння впливу нейрозапального процесу на біохімічні механізми виникнення, прискорення та перебігу амілоїдозу при нейродегенеративній патології. Особлива увага приділена функції цитокінової ланки вродженого імунітету нервової тканини головного мозку. Зокрема, детально проаналізовано вплив прозапальних цитокінів першої хвилі цитокінового каскаду на процеси пам'яті і регуляцію нейропластичності. Зазначена специфічність відповіді вродженого імунітету у сигнальних шляхах ефектів інтерлейкіну-1β і фактору некрозу пухлин α в умовах надлишкового синтезу і амілоїдогенного процесингу протеїну попередника β-амілоїдного пептиду. Розглянуто характер впливу цитокінів на клітини (аутокринно, паракринно або системно) та наведено схему каскаду цитокінової активації при амілоїдозі. В обзорі приділено увагу й іншим регуляторним пептидам: інтерлейкіну-6, інтерлейкіну-10, протеїну S100В тощо. А саме представлені особливості сигнальної трансдукції при взаємодії інтерлейкіну-6 зі своїм мембранним або розчинним рецепторами та необхідність останніх у стимулюванні розростання нейритів і виживанні нейронів, а також при регенерації нервів через ремієлінізацію. Наведені відомості про пост-транскрипційну регуляцію рівня антизапального інтерлейкіну-10, яка вміщує контроль стабільності мРНК за допомогою АС-збагачених елементів та окремих мікроРНК та зазначена його функція у пригніченні синтезу прозапальних цитокінів. Підкреслена здатність S100B посилювати експресію попередника β-амілоїдного пептиду і його мРНК, що веде до розладу навчання і пам'яті та атрофії мозку. Детально представлені сучасні відомості щодо впливу кожного з розглянутих цитокінів на синтез і метаболізм протеїну попередника β-амілоїдного пептиду, а також власні результати щодо індукції прозапальних цитокінів у мононуклеарах in vitro та у неокортексі і гіпокампі головного мозку експериментальних тварин in vivo під впливом агрегатів β-амілоїдних пептидів. Зроблено узагальнення, що цитокіни здебільшого активують синтез протеїну попередника β-амілоїдного пептиду і утворення агрегатів β-амілоїдних пептидів при хронічній дії, як це спостерігається при старінні або хворобі Альцгеймера, тому вони можуть брати безпосередню участь в посиленні амілоїдогенезу.

Завантаження

##plugins.generic.usageStats.noStats##

Біографія автора

В. Соколік, Інститут неврології, психіатрії та наркології НАМН України

Інститут неврології, психіатрії та наркології НАМН України, вул. Академіка Павлова, 46, Харків, Україна, 61088, Sokolik67@rambler.ru

Посилання

Adami C., Sorci G., Blasi E. et al. S100B Expression in and effects on microglia // Glia. – 2001. – Vol.33. – P. 131–142.

Arumugam T., Simeone D.M., Schmidt A.M., Logsdon C.D. S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE) // J. Biol. Chem. – 2004. – Vol.279. – P. 5059–5065.

Barger S.W., Van Eldik L.J. S100b stimulates calcium fluxes in glial and neuronal cells // J. Biol. Chem. – 1992. – Vol.267. – P. 9689–9694.

Barger S.W., Basile A.S. Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function // J. Neurochem. – 2001. – Vol.76. – P. 846–854.

Bauer J., Strauss S., Schreiter-Gasser U. et al. Interleukin-6 and alpha2-macroglobulin indicate an acute-phase state in Alzheimer’s disease cortices // FEBS Lett. – 1991. – Vol.285. – P. 111–114.

Blasko I., Marx F., Steiner E. et al. TNFα plus IFNγ induce the production of Alzheimer's β-amyloid peptides and decrease the secretion of APPs // FASEB J. – 1999. – Vol.13. – P. 63–68.

Blasko I., Veerhuis R., Stampfer-Kountchev M. et al. Costimulatory effects of interferon-γ and interleukin-lβ or tumor necrosis factor α on the synthesis of Aβ1-40 and Aβ1-42 by human astrocytes // Neurobiol. Dis. – 2000. – Vol.7. – P. 682–689.

Bodies A., Barger S.W. Cytokines and the aging brain- what we don't know might help us // Trends Neurosci. – 2004. – Vol.27. – P. 621–626.

Burton T., Liang B.H., Dibrov A. et al. Transcriptional activation and increase in expression of Alzheimer's β-amyloid precursor protein gene is mediated by TGF-β in normal human astrocytes // Biochem. Biophys. Res. Commun. – 2002. – Vol.295. – P. 702–712.

Buxbaum J.D., Oishi M., Chen H.I. et al. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer's piA4 amyloid protein precursor // Proc. NatI. Acad. Sci USA. – 1993. – Vol.89. – P. 10075–10078.

Carriba P., Comella J.X. Amyloid beta, TNFα and FAIM-L; approaching new therapeutic strategies for AD // Front Neurol. – 2014. – Vol.5. – P.276.

Carriba P., Jimenez S., Navarro V. et al. Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death // Cell Death Dis. – 2015. – Vol.6, no. 2. – Р.e1639.

Corbett J.A., Kwon G., Turk J. et al. IL-1 beta induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: activation of cyclooxygenase by nitric oxide // Biochemistry. – 1993. – Vol.32, no. 50. – P. 13767–13770.

Das S., Potter H. Expression of the Alzheimer amyloid-promoting factors α1-antichymotrypsin and apolipoprotein E is induced in astrocytes by IL-1 // Neuron. – 1995. – Vol.14. – P. 447–456.

Dash P.K., Moore A.N. Enhanced processing of APP induced by IL-lβ can be reduced by indomethacin and nordihydroguaiaretic acid // Biochem. Biophys. Res. Commun. – 1995. – Vol.208. – P. 542–548.

Del Bo R., Angeretti N., Lucca E. et al. Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and β-amyloid production in cultures // Neurosci. Lett. – 1995. – Vol.188. – P. 70–74.

Docagne F., Gabriel C., Lebeurrier N. et al. Spl and Smad transcription factors co-operate to mediate TGF-β-dependent activation of amyloid-β precursor protein gene transcription // Biochem. J. – 2004. – Vol.383. – P. 393–399.

Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type // Biochimica et Biophysica Acta. – 1999. – Vol.1450. – P. 191–231.

Fillit H., Ding W.H., Buee L. et al. Elevated circulating tumor necrosis factor levels in Alzheimer’s disease // Neurosci Lett. – 1991. – Vol.129. – P. 318–320.

Forloni G., Demicheli F., Giorgi S. et al. Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1 // Brain Res. Mol. Brain Res. – 1992. – Vol.16. – P. 128–134.

Goldgaber D., Harris H.W., Hla T. et al. Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells // Proc. Natl. Acad. Sci. USA. – 1989. – Vol.86. – P. 7606–7610.

Griffin W.T., Mrak R.E. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease // J. Leukoc. Biol. – 2002. – Vol.72, no. 2. – P. 233–238.

Griffin W.S.T. Inflammation and neurodegenerative diseases // Am. J. Clin. Nutr. – 2006. – Vol.83. – P. 470S–474S.

Hammer M., Mages J., Dietrich H. et al. Control of dual-specificity phosphatase-1 expression in activated macrophages by IL-10 // European Journal of Immunology. – 2005. – Vol.35, no. 10. – P. 2991–3001.

Heinrich P.C., Behrmann I., Müller-Newen G. et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway // Biochem. J. – 1998. – Vol.334, pt 2. – P. 297–314.

Heinrich P.C., Behrmann I., Haan S. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation // Biochem. J. – 2003. – Vol.374, pt 1. – P. 1–20.

Heizmann C.W. The multifunctional S100 protein family // Methods Mol. Biol. – 2002. – Vol.172. – P. 69–80.

Hu J., Ferreira A., Van Eldik L.J. S100 beta induces neuronal cell death through nitric oxide release from astrocytes // J. Neurochem. – 1997. – Vol.69. – P. 2294–2301.

Hu J., Van Eldik L.J. Glial derived proteins activate cultured astrocytes and enhance β-amyloid-induced astrocyte activation // Brain Res. – 1999. – Vol.842. – P. 46–54.

Isobe T., Okuyama T. The amino acid sequence of the K-subunit in bovine brain S100a protein // Eur. J. Biochem. – 1981. – Vol.116. – P. 79–86.

Kronfol Z., Remick D.G. Cytokines and the brain: implications for clinical psychiatry // Am. J. Psychiat. – 2000. – Vol.157. – P. 683–694.

Landar A., Caddell G., Chessher J., Zimmer D.B. Identification of an S100A/S100B target protein: phosphoglucomutase // Cell Calcium. – 1996. – Vol.20. – P. 279–285.

Lesne S., Docagne F., Gabriel C. et al. Transforming growth factor-β1 potentiates amyloid-β generation in astrocytes and in transgenic mice // J. Biol. Chem. – 2003. – Vol.278. – P. 18408–18418.

Li Y., Barger S. W., Liu L. et al. S100β induction of the pro-inflammatory cytokine interleukin-6 in neurons // J. Neurochem. – 2000. – Vol.74. – P. 143–150.

Li Y., Liu L., Barger S. W., Griffin W.S. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway // J. Neurosci. – 2003. – Vol.23. – P. 1605–1611.

Liu L., Li Y., Van Eldik L. J. S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors // J. Neurochem. – 2005. – Vol.92. – P. 546–553.

Lue L.F., Yan S.D., Stern D.M., Walker D.G. Preventing activation of receptor for advanced glycation endproducts in Alzheimer’s disease // Curr. Drug Targets CNS Neurol. Disord. – 2005. – Vol.4. – P. 249–266.

Luterman J.D., Haroutunian V., Yemul S. et al. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia // Arch. Neurol. – 2000. – Vol.57. – P. 1153–1160.

Ma G., Chen S., Wang X. et al. Short-term interleukin-lβ increases the release of secreted APPα via MEK1/2-dependent and JNK-dependent α-secretase cleavage in neurogliama U251 cells // J. Neurosci. Res. – 2005. – Vol.80. – P. 683–692.

March C.J., Mosley B., Larsen A. et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs // Nature. – 1985. – Vol.315, no. 6021. – P. 641–647.

Marenholz I., Heizmann C.W., Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature) // Biochem. Biophys. Res. Commun. – 2004. – Vol.322. – P. 1111–1122.

Marques-Fernandez F., Planells-Ferrer L., Gozzelino R. et al. TNFα induces survival through the FLIP-L-dependent activation of the MAPK/ERK pathway // Cell Death Dis. – 2013. – Vol.4. – P.e493.

Micheau O., Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes // Cell. – 2003. – Vol.114. – P. 181–190.

Monning U., Sandbrink R., Banati R.B. et al. Transforming growth factor β mediates increase of mature transmembrane amyloid precursor protein in microglial cells // FEBS Lett. – 1994. – Vol.342. – P. 267–272.

Mosser D.M., Zhang X. Interleukin-10: new perspectives on an old cytokine // Immunological Reviews. – 2008. – Vol.226, no. 1. – P. 205–218.

Mrak R.E., Griffin W.S. The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease // Neurobiol. Aging. – 2001. – Vol.22. – P. 915–922.

Nishiyama H., Knopfel T., Endo S., Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity // Proc. Natl. Acad. Sci. USA. – 2002. – Vol.99. – P. 4037–4042.

Old L.J. Tumor necrosis factor (TNF) // Science. – 1985. – Vol.230, no. 4726. – P. 630–632.

Ouyang W., Rutz S., Crellin N.K. et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease // Annual Review of Immunology. – 2011. – Vol.29. – P. 71–109.

Powell M.J., Thompson S.A., Tone Y. et al. Posttranscriptional regulation of IL-10 gene expression through sequences in the 3'-untranslated region // Journal of Immunology. – 2000. – Vol.165, no. 1. – P. 292–296.

Rage F., Silhol M., Tapia-Arancibia L. IL-1beta regulation of BDNF expression in rat cultured hypothalamic neurons depends on the presence of glial cells // Neurochem Int. – 2006. – Vol.49. – P. 433–441.

Ringheim G.E., Szcepanik A.M., Burgher K. L. et al. Transcriptional inhibition of the beta-amyloid precursor protein by interferon-gamma // Biochem. Biophys. Res. Commun. – 1996. – Vol.224. – P. 246–251.

Rogers J.T., Leiter L.M., McPhee J. et al. Translation of the Alzheimer's amyloid precursor protein mRNA is upregulated by interleukin-l through 5'-untranslated region sequences // J. Biol. Chem. –1993. – Vol.274. – P. 6421–6431.

Saraiva M., O'Garra A. The regulation of IL-10 production by immune cells // Nature Reviews. Immunology. – 2010. – Vol.10, no. 3. – P. 170–181.

Sastre M., Dewachter I., Landreth G.E. et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase // J. Neurosci. – 2003. – Vol.23. – P. 9796–9804.

Schönbeck U., Mach F., Libby P. Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing // J. Immunol. – 1988. – Vol.161, no. 7. – P. 3340–3346.

Schulte L.N., Eulalio A., Mollenkopf H.J. et al. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family // The EMBO Journal. – 2011. – Vol.30, no. 10. – P. 1977–1989.

Segura M.F., Sole C., Pascual M. et al. The long form of Fas apoptotic inhibitory molecule is expressed specifically in neurons and protects them against death receptor-triggered apoptosis // J. Neurosci. – 2007. – Vol.27. – P. 11228–11241.

Selinfreud R.H., Barger S.W., Pledger W.J., Van Eldik L.J. Neurotrophic protein S100 beta stimulates glial cell proliferation // Proc. Natl. Acad. Sci. USA. – 1991. – Vol.88. – P. 3554–2558.

Sharma A., Kumar M., Aich J. et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a // Proc. Natl. Acad. Sci. USA. – 2009. – Vol.106, no. 14. – Р. 5761–5766.

Sheng J.G., Mrak R.E., Griffin W.S.T. S100β protein expression in Alzheimer’s disease: potential role in the pathogenesis of neuritic plaques // J. Neurosci. Res. – 1994. – Vol.39. – P. 398–404.

Sheng J.G., Ito K., Skinner R.D. et al. In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis // Neurobiol. Aging. – 1996а. – Vol. 17. – P. 761–766.

Sheng J.G., Mrak R.E., Rovnaghi C.R. et al. Human brain S100β and S100β mRNA expression increases with age: pathogenic implications for Alzheimer’s disease // Neurobiol. Aging. – 1996b. – Vol.17. – P. 359–363.

Sheng J.G., Mrak R.E., Griffin W.S. . Enlarged and phagocytic, but not primed, IL-1α+ microglia increase with age in normal human brain // Acta Neuropathol. – 1998. – Vol.94. – P. 1–5.

Sokolik V.V., Berchenko O.G., Shulga S.M. Comparative analysis of nasal therapy of curcumin soluble and liposomal forms of rats with model of Alzheimer’s disease // Journal of Alzheimer’s Disease & Parkinsonism. – 2017. – Vol.7, no. 4. – P.1000357.

Sokolik V.V., Koliada O.K., Shulga S.M. Effect of β-amyloid peptide 42 on the dynamics of expression and formation of Аβ40, IL-1β, TNFα, IL-6, IL-10 by peripheral blood mononuclear cells in vitro and its correction by curcumin // Ukr. Biochem. J. – 2016. – Vol.88, no. 1. – P. 109–118.

Sokolik V.V., Maltsev A.V. Cytokines neuroinflammatory reaction to the action of β-amyloid 1-40 administered to rats in homoaggregated and liposomal forms // Biochem. Moscow Suppl. Ser. B. – 2015. – Vol.9, no. 4. – Р. 355–361.

Sorci G., Agneletti A.L., Bianchi R., Donato R. Association of S100B with intermediate filaments and microtubules in glial cells // Biochim. Biophys. Acta. – 1998. – Vol.1448. – P. 277–289.

Stellwagen D., Malenka R.C. Synaptic scaling mediated by glial TNF-alpha // Nature. – 2006. – Vol.440. – P. 1054–1059.

Swardfager W., Lanctôt K., Rothenburg L. et al. A meta-analysis of cytokines in Alzheimer's disease // Biological Psychiatry. – 2010. – Vol.68, is. 10. – P. 930–941.

Taishi P., Churchill L., De A. et al. Cytokine mRNA induction by interleukin-1 beta or tumor necrosis factor alpha in vitro and in vivo // Brain Res. – 2008. – Vol.1226. – P. 89–98.

Tarkowski E., Blennow K., Wallin A. et al. Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia // J. Clin. Immunol. – 1999. – Vol.19. – P. 223–230.

Van der Wal E.A., Gomez-Pinilla F., Cotman C.W. Transforming growth factor-beta is in plaques in Alzheimer's and Down pathologies // Neuroreport. – 1993. – Vol.4. – P. 69–72.

Vasilakos J.P., Carroll R.T., Emmerling M.R. et al. Interleukin-lβ dissociates β-amyloid precursor protein and β-amyloid peptide secretion // FEBS Lett. – 1994. – Vol.354. – P. 289–292.

Verstrepen L., Bekaert T., Chau T.L. et al. TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme // Cell. Mol. Life Sci. – 2008. – Vol.65, no. 19. – P. 2964–2978.

Wyss-Coray T., Masliah E., Mallory M. et al. Amyloidogenic role of cytokine TGF-β1 in transgenic mice and in Alzheimer's disease // Nature. – 1997. – Vol.389. – P. 603–606.

Yang F., Jansen L., Friedrichs W.E. et al. ILlβ decreases expression of amyloid precursor protein gene in human glioma cells // Biochem. Biophys. Res. Commun. – 1993. – Vol.191. – P. 1014–1019.

Yang Y., Quitschke W.W., Brewer G.I. Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-l and retinoic acid, but not by reactive oxygen species // Brain Res. Mol. Brain Res. – 1998. – Vol.60. – P. 40–49.

Zhu S.G., Sheng J.G., Jones R.A. et al. Increased interleukin-1β converting enzyme expression and activity in Alzheimer disease // J. Neuropathol. Exp. Neurobiol. – 1999. – Vol.58. – P. 582–587.

Цитування

IMPACT OF NITRIC OXIDE SYNTHESIS MODULATORS ON THE CYTOKINES PROFILE IN EXPERIMENTAL ANTIPHOSPHOLIPID SYNDROME
Yaremchuk O. Z., Posokhova K. A., Kuzmak I. P., Kulitska M. I., Shevchuk О. О., Volska A. S. & Lykhatskyi P.H. (2020) International Journal of Medicine and Medical Research
Crossref

Опубліковано
2018-11-28
Цитовано
Як цитувати
Соколік, В. (2018). Нейрозапалення у біохімічних механізмах амілоїдозу. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Біологія», 30(30), 103-112. https://doi.org/10.26565/2075-5457-2018-30-12
Розділ
ОГЛЯДИ