The effect of sulfur-containing compounds on stress resistance of Drosophila melanogaster

Keywords: Drosophila melanogaster, methionine, sodium thiosulfate, heat stress, alimentary deprivation, fertility

Abstract

We have studied the resistance of D. melanogaster imago, Oregon-R stock, reared on the culture medium, supplied either with methionine (1 mg/ml), or with sodium thiosulphate (0.05 mol/l or 0.1 mol/l), to heat (thermal) and alimentary stress. Also we have analyzed the effect of these substances addition to the medium on fertility and pupa lethality of D. melanogaster. A significant increase of resistance to heat stress was shown in flies reared on the culture medium supplied with methionine. Percent of individuals survived after heat stress increased by 35.5%. Imago survival, in the conditions of alimentary deprivation, increased; in this group average life span increased for 3.7 hours, maximal – for 7.5 hours. Fertility of drosophila reared on the medium with addition of methionine increased; number of pupas obtained from one female was more, than in control by 44%. Pupa lethality in this group decreased in three times. Resistance to heat stress of flies reared on the medium with addition of sodium thiosulphate (0.05 mol/l) increased. Number of individuals survived after heat stress was more, than in control by 10%. However, resistance to alimentary deprivation decreased. Their average life span was less for 3.2 hour, than in the control group, and maximal life span was less for 5.4 hour. Resistance to heat stress of flies reared on the medium supplemented with 0.1 mol/l sodium thiosulphate decreased. Percent of individuals survived after heat stress was twice less. Average life span and maximal life span in the conditions of alimentary deprivation increased by 3.4 hours and by 5.5 hours respectively. Fertility of flies developed in the medium with sodium thiosulfate (0.05 mol/l) supplement increased by 48 %, while same index for those consumed sodium thiosulfate 0.1 mol/l had a clear tendency to reduction by 33%. Pupa lethality in both groups consumed sodium thiosulphate (0.05 mol/l and 0.1 mol/l) decreased by 28% and 35% respectively. Thus, methionine consumption by larvae of D. melanogaster promotes resistance to stress and fertility of Oregon-R stock. The effect of sodium thiosulphate on drosophila fitness indexes studied depends on its concentration in the culture medium.

Downloads

Download data is not yet available.

Author Biographies

O. Chaka, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine

Bogomoletz Str., 4, Kyiv, Ukraine, 01024, lenchaka@ukr.net

R. Yanko, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine

Bogomoletz Str., 4, Kyiv, Ukraine, 01024, biolag@ukr.net

S. Safonov, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine

Bogomoletz Str., 4, Kyiv, Ukraine, 01024, sersaffiz@gmail.com

I. Kolomiets, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine

Bogomoletz Str., 4, Kyiv, Ukraine, 01024, kolomiets.ira@ukr.net

M. Levashov, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine

Bogomoletz Str., 4, Kyiv, Ukraine, 01024, levashov@biph.kiev.ua

References

Волкова Н.Е., Филипоненко Н.С., Красовская В.В. и др. Влияние фолиевой кислоты и метионина на приспособленность Drosophila melanogaster // Вісник Харківського національного університету імені В.Н.Каразіна. Серія: біологія. – 2013. – Вип.17, №1056. – C. 62–77. / Volkova N.Ye., Filiponenko N.S., Krasovska V.V. et al. Effect of the folic acid and methionine on Drosophila melanogaster fitness // The Journal of V.N.Karazin Kharkiv National University. Series “Biology”. – 2013. – Vol.17 (1056). – P. 62–77./

Жукова М.В, Киселева Е.В. Влияние голодания на продолжительность жизни и апоптоз в клетках яичников Drosophila melanogaster // Вавиловский журнал генетики и селекции. – 2011, Т.15, №1. – С. 148–155. /Zhukova M.V, Kiseleva E.V. Influence of starvation on the lifespan and apoptosis in ovarian cells of Drosophila melanogaster // Vavilov Journal of Genetics and Breeding. – 2011. – Vol.15 (1). – P.148–155./

Камышев Н.Г. Физиолого-генетический анализ поведения и естественных форм обучения у дрозофилы. Автореф. дисс. … доктора биол. наук. – Санкт-Петербург, 1999. – 20с. /Kamyshev N.G. Physiological and genetic analysis of behavior and natural forms of learning in drosophila. Abstract of thesis of dissertation for the doctor degree in biological sciences. – Saint Petersburg, 1999. – 20p./

Панасенко O.O., Ким М.В., Гусев Н.Б. Структура и свойства малых белков теплового шока // Успехи биологической химии. – 2003. – Т.43. – С. 59–98. /Panasenko O.O., Kim M.V., Gusev N.B. Structure and properties of small proteins of thermal shock // Successes of Biological Chemistry. – 2003. – Vol.43. – P. 59–98./

Педан Л.Р., Тимченко О.І. Вплив зовнішніх факторів на виникнення мутацій у популяції дрозофіли і їхній зв’язок з плодовитістю (огляд літератури) // Гігієна населених місць. – 2014. – №64. – C. 356–368. /Pedan L.R.,Timchenko O.I. Influence of external factors on the origin of mutations in the populations of drosophila and their connection with fecundity (review of literature) // Hygiene of inhabited places. – 2014. – No. 64. – P. 356–368./

Тапбергенов С.О., Бекбосынова Р.Б., Советов Б.С. Болысбекова С.М. Функциональное состояние компонентов белков теплового шока глутатионредуктазы и глутатионовой редокс-системы при перегревании и охлаждении // Успехи современного естествознания. – 2015. – №1 (часть 5) – С. 781–784. /Таpbеrgеnоv S.О., Bekbosynova R.B., Sovetov B.S., Bolysbekova S..М. Functional status of the components of heat shock proteins of glutathione reductase and glutathione redox system by overheating and cooling // Advances in Current Natural Sciences. – 2015. – No. 1 (part 5). – P. 781–784./

Чепель Л.М., Алексеев В.М. Сравнительное изучение теплоустойчивости инбредных линий и гибридов шелкопрядов и дрозофилы // Устойчивость к экстремальным температурам и температурные адаптации. – Харьков, 1971. – С. 58–61. /Chepel L.M.,Aleseev V.M. Comparative study of thermostability of inbred stocks and hybrids of silkworms and drosophila // Stability to the extreme temperatures and temperature adaptations. –Kharkiv, 1971. – P. 58–61./

Campbell K., Vowinckel J., Keller A., Ralser M. Methionine metabolism alters oxidative stress resistance via the pentose phosphate pathway // Antioxid. Redox Signal. – 2016. – Vol.24 (10). – P. 543–547.

Davis C., Uthus E. DNA methylation, cancer susceptibility, and nutrient interactions // Exp. Biol. Med. – 2004. – Vol.229 (10). – P. 988–995.

Friedman M. The chemistry and biochemistry of the sulfhydryl group in amino acids, peptides and protein. – Pergamon Pr., Oxford, England and Elmosford, New York, 1973. – 485р.

Gavin D., Sharma R. Histone modifications, DNA methylation, and schizophrenia // Neurosci. Biobehav. Rev. – 2010. – Vol.34 (6). – P. 882–888.

Ginevan M.E., Lane D.D. Effects of sulfur dioxide in air on the fruit fly, Drosophila melanogaster // Environmental Science and Technology. – 1978. – Vol.12 (7). – P. 828–831.

Grandison R.C., Piper M.D., Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila // Nature. – 2009. – Vol.462 (7276). – Р. 1061–1064.

Hartl F.U., Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein // Science. – 2002. – Vol.295 (5561). – P. 1852–1858.

Jacobson J., Lambert A.J., Portero-Otin M. et al. Biomarkers of aging in Drosophila // Aging Cell. – 2010. – Vol.9 (4). – P. 466–477.

James S., Cutler P., Melnyk S. et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism // Am. J. Clin. Nutr. – 2004. – Vol.80 (6). – P. 1611–1617.

Juhasz G., Csikos G., Sinka R. et al. The Drosophila homolog of Aut1 is essential for autophagy and development // FEBS Lett. – 2003. – Vol.543 (1–3). – P. 154–158.

Kadowski M., Karim M., Carpi A., Miotto G. Nutrient control of macroautophagy in mammalian cells // Mol. Aspects Med. – 2006. – Vol.27. – P. 426–443.

Katz A.J. Sodium thiosulfate inhibits cisplatin-induced mutagenesis in somatic tissue of Drosophila // Environ. Mol. Mutagen. – 1989. – Vol.13 (2). – P. 97–99.

Mathew R., White E. Why sick cells produce tumors // Autophagy. – 2007. – Vol.3. – P. 502–505.

Matter B.E., Würgler F.E., Ulrich H. On the radioprotective effect of hydrogen sulfide in Drosophila melanogaster // International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine. – 1969. – Vol.15. – P. 557–562.

Orgeron M.L., Stone K.P., Wanders D. et al. The impact of dietary methionine restriction on biomarkers of metabolic health // Prog. Mol. Biol. Transl. Sci. – 2014. – Vol.121. – Р. 351–376.

Sen U.M., Vasek T.P., Hughest W.M. Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation // Pharmacology. – 2008. – Vol.82. – P. 201–213.

Surai P.F., Meze M. Mycotoxins and immunity: theoretical consideration and practical application // Praxis veterinaria. – 2005. – Vol.53 (1–2). – P. 71–88.

Troen A.V., French E.E., Roberts J.F. et al. Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet // Age (Dordr). – 2007. – Vol.29 (1). – P. 29–39.

Ulrich C.M. Genetic variability in folate-mediated one-carbon metabolism and cancer risk // In: S.-W.Choi, S.Friso (eds.) Nutrient-gene interactions in cancer. – Taylor and Francis, 2006. – 296p.

Wagner C. Biochemical role of folate in cellular metabolism // In: L.B.Bailey (ed.) Folate in health and disease. – New York: Marcel Dekker, 2000. – P. 23–42.

Published
2019-11-07
Cited
How to Cite
Chaka, O., Yanko, R., Safonov, S., Kolomiets, I., & Levashov, M. (2019). The effect of sulfur-containing compounds on stress resistance of Drosophila melanogaster. The Journal of V.N.Karazin Kharkiv National University. Series «Biology», 33, 91-98. https://doi.org/10.26565/2075-5457-2019-33-12
Section
PHYSIOLOGY OF HUMAN AND ANIMALS