Variability analysis in Drosophila melanogaster locus white compound heterozygotes at different genetic backgrounds
Abstract
In the paper the characteristics of variability in Drosophila melanogaster locus white compounds at different degrees of genetic background heterozygosity that were experimentally studied and analyzed are represented. It has been found that the variability of white locus compounds at different degree of genetic background heterozygosity is revealed in deviation of the sex ratio in first and second generation offspring, in reduced viability of the second generation, and in the emergence of the irregular offspring of different nature. The frequency of X-aneuploidy obtained here is twice higher that is known for spontaneous levels of aneuploidy for this species, somatic mutagenesis frequency is 0,03% and is near spontaneous level for drosophila; the level of heterozygosity has no effect on the conversion rate in D. melanogaster white locus in the region between alleles [1] and [a], but there are more chances for conversion at this site if allele [a] comes from mother.
Downloads
References
Allele Dmel w[1]. The report. Drosophila genome database. Electronic resource. http://flybase.org/reports/FBal0018074.html
Allele Dmel w[a]. The report. Drosophila genome database. Electronic resource. http://flybase.org/reports/FBal0018195.html
Baklanova-Yelkina Ye.Y., Ivanov V.I., Kaurov B.A., Mglinets V.A. Study of the variability of the manifestation of Nasobemia mutation in Drosophila melanogaster // Tsitol. Genet. – 1987. – Vol.21, No3. – P. 195–199. (in Russian).
Blair S.S. Genetic mosaic techniques for studying Drosophila development // Development. – 2003. – Vol.130. – P. 5065–5072.
Boyko Ye.A., Chepel L.M., Sukhanov S.V. Influence of the degree of inbreeding of parental components of silkworm interline hybrids on heterosis effect manifestation and on reaction to laser radiation // The Journal of V.N.Karazin Kharkiv National University. Series: biology. – 2008. – Iss.8, No 828. – P. 24–29. (in Russian).
Boyko Ye.A., Sukhanov S.V., Shakhbasov V.G. Genetic differences in resistance of silkworm (Bombyx mori L.) to electromagnetic field // Materials of The 8-th International Scientific Ecological Conference «Actual problems of the stability of living systems preservation». – Belgorod, 2004. – P. 23–24. (in Russian).
Chen J.-M., Cooper D.N., Chuzhanova N. et al. Gene conversion: mechanisms, evolution and human disease // Nature Reviews Genetics. – 2007. – Vol.8. – P. 762–775.
Clarke C.L., Sandle J., Jones A.A. et al. Mapping loss of heterozygosity in normal human breast cells from BRCA1/2 carriers // British Journal of Cancer. – 2006. – №95. – Р. 515–519.
Clarke G.M., Oldroyd B.P., Hunt P. The genetic basis of developmental stability in Apis mellifera: Heterozygosity versus genetic balance // Evolution. – 1992. – Vol.46. – P. 753–762.
Coyne J., Beecham E. Heritability of two morphological characters within and among natural populations of Drosophila melanogaster // Genetics. – 1987. – Vol.117. – P. 727–737.
Dobzhansky T. Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura // Genetics. – 1950. – Vol.35. – P. 288–302.
Dreesen T.D., Johnson D.H., Henikoff S. The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes // Mol. Cell. Biol. – 1988. – Vol.8. – P. 5206–5215.
Epstein Ch.J. The consequences of chromosome imbalance: principles, mechanisms, and models. – Cambridge: Cambridge University Press, 2007. – 487p.
Erhardt S., Schwieler L., Nilsson L. et al. The kynurenic acid hypothesis of schizophrenia // Physiol. Behav. – 2007. – Vol.92, Iss. 1–2. – P. 203–209.
Frank J., van Geel M., van Steensel M.A.M. Loss of heterozygosity studies on chromosome 12q in disseminated superficial actinic porokeratosis: lessons to be learned // Journal of Investigative Dermatology. – 2007. – №127. – Р. 2058–2059.
Frank S.A. Somatic evolutionary genomics: Mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration // PNAS. – 2010. – Vol.107, suppl. 1. – P. 1725–1730.
Garcia A.M., Calder R.B., Dollé M.E.T. et al. Age- and temperature-dependent somatic mutation accumulation in Drosophila melanogaster // PLOS Genetics. – 2010. – Electronic resource. http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000950
Garcia A.M., Derventzi A., Busuttil R. et al. A model system for analyzing somatic mutations in Drosophila melanogaster // Nature Methods. – 2007. – Vol.4, Iss.5. – P. 401–403.
Gene Dmel w. The report. Drosophila genome database. Electronic resource. http://flybase.org/reports/FBgn0003996.html.
Gregg T.G., Day J.W. Nondisjunction of the X chromosomes in females of Drosophila hydei // Genetica. – 1965. – Vol.36. – P. 172–182.
Kahn A., Sick K. Gene conversion in the shibirets locus of Drosophila melanogaster // Hereditas. – 1982. – Vol.97. – P. 59–63.
Kaidanov L.Z. An analysis of genetic after-effects of selection and inbreeding in Drosophila melanogaster // Biology Bulletin Reviews. – 1979. – Vol.40, Iss.6. – P. 834–850. (in Russian).
Kirpichenko T.V., Strashnyuk V.Yu., Vorobjova L.I., Shakhbazov V.G. The effect of the genotype on the expressiveness of character vestigial and polyteny of giant chromosomes in Drosophila melanogaster Meig. // Russian Journal of Genetics. – 2002. – Vol.38, Iss.12. – P. 1371–1375.
Koehler K.E., Hawley R.S., Sherman S., Hassold T. Recombination and nondisjunction in humans and flies // Hum. Mol. Genet. – 1996. – Vol.5. – P. 1495–1504.
Leary R.F., Allendorf F.W., Knudsen K.L. Developmental instability and high meristic counts in interspecific hybrids of salmonide fishes // Evolution. – 1985. – Vol.39. – P. 1318–1326.
Leary R.F., Allendorf F.W. Fluctuating asymmetry as an indicator of stress: implications for conservation biology // Trends in Ecology and Evolution. – 1989. – Vol.4. – P. 214–217.
Levchuk L.V., Tots’kyy V.M. Chromosome substitution and genotype adaptation in Drosophila melanogaster // Tsitol. Genet. – 1998. – Vol.32, Iss.2. – P. 42–48. (in Russian).
Marshall W.W., Muller H.G. The effect of long-continued heterozygosis on a variable character in Drosophila // J. Exp. Zool. – 1917. – N 22. – Р. 457–470.
McDonald J.H. Handbook of biological statistics (3rd ed.). – Baltimore, Maryland: Sparky House Publishing, 2014. – 296p.
Mount S.M. Sequence similarity // Nature. – 1987. – Vol.325. – P.487.
O'Malley D.P., Orazi A., Dunphy C.H. et al. Loss of heterozygosity identifies genetic changes in chronic myeloid disorders, including myeloproliferative disorders, myelodysplastic syndromes and chronic myelomonocytic leukemia // Modern Pathology. – 2007. – №20. – Р. 1166–1171.
Oxenkrug G.F. Interferon-gamma-inducible kynurenines / pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders // J. Neural Transm. – 2011. – Vol.118, Iss.1. – P. 75–85.
Palmer A.R. Waltzing with asymmetry: is fluctuating asymmetry a powerful new tool for biologists or just an alluring new dance step? // BioScience. – 1996. – Vol.46. – P. 518–532.
Palmer A.R., Strobeck C. Fluctuating asymmetry: measurement, analysis, patterns // Annual Review of Ecology and Systematics. – 1986. – Vol.17. – P. 391–421.
Parsons P.A. Fluctuating asymmetry: an epigenetic measure of stress // Biological Review. – 1990. – Vol.65. – P. 131–145.
Rihito M., Shuhei N., Atsuhiro Sh. et al. Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems // Journal of Nucleic Acids. – 2010. – Article ID 179594, 32p. http://www.hindawi.com/journals/jna/2010/179594/
Savary S., Denizot F., Luciani M.-F. et al. Molecular cloning of a mammalian ABC transporter homologous to Drosophila white gene // Mammalian Genome. – 1996. – №7. – Р. 673–676.
Shakhbazov V.G. Ecological and biophysical genetics. – Kh.: Shtrikh, 2001. – 436p. (in Russian)
Shakhbazov V.G., Shereshevska C.M., Shestopalova N.G. About heat resistance and reparation ability of heterosis plants // Questions of genetics, breeding and heterosis in animals. – К: Naukova Dumka, 1971. – 239p. (in Russian).
Sullivan D.T., Sullivan M.C. Transport defects as the physiological basis for eye color mutants of Drosophila melanogaster // Biochem. Genet. – 1975. – Vol.13. – P. 603–613.
Takeuchi S., Tsukasaki K., Bartram C.R. et al. Long-term study of the clinical significance of loss of heterozygosity in childhood acute lymphoblastic leukemia // Leukemia. – 2003. – №17. – Р. 149–154.
Tearle R.G., Belote J.M., McKeown M. et al. Cloning and characterization of the scarlet gene of Drosophila melanogaster // Genetics. – 1989. – Vol.122. – P. 595–606.
Tearle R. Tissue specific effects of ommochrome pathway mutations in Drosophila melanogaster // Genetical Research. – 1991. – Vol.57. – P. 257–266.
The Genome Sequence of Drosophila melanogaster // Science. – 2000. – Vol.24, Is.287, No 5461. – P. 2185–2195.
Vasilyeva L.A., Ratner V.A. Effect of genotypic environment on the phenotypic expression of mutation radius incompletes in Drosophila melanogaster // Russian Journal of Genetics. – 2000. – Vol.36, Iss.2. – P. 126–137.
Vorobyova L.I. The dependence of the heterosis effect on the level of baselines heterozygosity. Thesis, PhD: 03.00.15 / Kharkov State University – Kh., 1988. – 17p. (in Russian).
Yurchenko N.N., Golubovsky M.D. Contemporary genetics of the white locus of Drosophila melanogaster // Russian Journal of Genetics. – 1988. – Vol.24, Iss.4. – P. 581–591.
Zeng Y., Li H., Schweppe N.M. et al. Statistical analysis of nondisjunction assays in Drosophila // Genetics. – 2010. – Vol.186. – P. 505–513.
Zhuravlyova L., Strashnyuk V., Shakhbazov V. Influence of culture density on heterosis effect in Drosophila melanogaster // Visnyk of L’viv Univ. Biology Series. – 2004. – Iss.5. – P. 102–109. (in Ukrainian).
Zolotyh I., Nekrasova A. The role of genotype and aging in changing of expressivity of gene Bar Drosophila melanogaster // Visnyk of L’viv Univ. Biology Series. – 2004. – Iss.38. – P. 88–91. (in Ukrainian).
Zolotyh I., Nekrasova A., Shakhbazov V. The role of genotype system and some visible mutations in definition of life-span of Drosophila melanogaster // Visnyk of L’viv Univ. Biology Series. – 2004. – Iss.35. – P. 115–120. (in Ukrainian).
Authors retain copyright of their work and grant the journal the right of its first publication under the terms of the Creative Commons Attribution License 4.0 International (CC BY 4.0), that allows others to share the work with an acknowledgement of the work's authorship.