Ambipolar Diffusion in a Plasma Consisting of Electrons, Negative Ions and Two Types of Positive Ions
Abstract
In this work we investigated the ambipolar diffusion in electronegative plasma. The case of a plasma containing electrons, one kind of negative ions and two kinds of positive ions is considered. The formulas for the coefficient of ambipolar diffusion are obtained, which in extreme cases (one kind of negative ions, electropositive plasma) give the well-known results. It is shown that in a plasma with a density of negative ions more than 10 times higher the density of electrons, it is necessary to take into account the mobility of positive and negative ions. It was found that in strongly electronegative plasmas diffusion is no longer ambipolar, the ambipolar diffusion coefficients of charged particles are approximately equal to their free diffusion coefficients.
Downloads
References
Raizer Y.P. Gas Discharge Physics. - Berlin: Springer, 1991. - 449 p.
Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing. - Hoboken, New Jersey: Wiley, 2005. - 757 p.
Lichtenberg A.J., Vahedi V., Lieberman M.A., Rognlien T. Modeling electronegative plasma discharges // J. Appl. Phys. - 1994. - Vol.75, №.5. - P. 2339-2347.
Stoffels E., Stoffels W.W., Vender D., Haverlag M., Kroesen G.M.W., de Hoog F.J. Negative ions in low pressure discharges // Contrib. Plasma Phys. - 1995. - Vol.35, №.4-5. - P. 331-357.
Kouznetsov I.G., Lichtenberg A.J., Lieberman M.A. Modelling electronegative discharges at low pressure // Plasma Sources Sci. Technol. - 1996. - Vol.5, №.4. - P. 662-676.
Lee Y.T., Lieberman M.A., Lichtenberg A.J., Bose F., Baltes H., Patrick R. Global model for high pressure electronegative radio-frequency discharges // J. Vac. Sci. Technol. A. - 1997. - Vol.15, №.1. - P. 113-126.
Lichtenberg A.J., Lieberman M.A., Kouznetsov I.G., Chung T.H. Transitions and scaling laws for electronegative discharge models // Plasma Sources Sci. Technol. - 2000. - Vol.9, №.1. - P. 45-56.
Kim S., Lieberman M.A., Lichtenberg A.J., Gudmundsson J.T. Improved volume-averaged model for steady and pulsed-power electronegative discharges // J. Vac. Sci. Technol. A. - 2006. - Vol.24, №.6. - P. 2025-2040.
Hagelaar G.J.M., Fubiani G., Boeuf J.-P. Model of an inductively coupled negative ion source: I. General model description // Plasma Sources Sci. Technol. - 2011. - Vol.20, №.1. - P. 015001 (16pp).
Radouane K., Despax B., Yousfi M., Couderc J.P., Klusmann E., Meyer H., Schulz R., Schulze J. Two-dimensional electrical modeling of asymmetric radio-frequency discharges for geometry effect analysis. Comparison with experiments // J. Appl. Phys. - 2001. - Vol.90, №.9. - P. 4346-4354.
Aydil E.S., Economou D.J. Theoretical and experimental investigations of chlorine RF glow discharge // J. Electrochemical Society. - 1992 - Vol.139, №.5. - P. 1396-1406.
Ashida S., Lieberman M.A. Spatially averaged (global) model of time modulated high density chlorine plasmas // Jpn. J. Appl. Phys. - 1997. - Vol.36, №.2. - P. 854-861.
Sommerer T.J., Kushner M.J. Monte Carlo - fluid model of chlorine atom production in Cl2, HCl, and CCl4 radio-frequency discharges for plasma processing // J. Vac. Sci. Technol. A. - 1992. - Vol.10, №.5. - P. 2179-2187.
Thompson J.B. Negative Ions in the Positive Column of the Oxygen Discharge // Proc. Phys. Soc. – 1959. – Vol.73, №.5. – P. 818-821.
McDaniel E.W., Mason E.A. The mobility and diffusion of ions in gases. - New York: Wiley, 1973. - 422 p.
Kono A. Negative ions in processing plasmas and their effect on the plasma structure // Applied Surface Science. - 2002. - Vol.192, №.1. - P. 115-134.
De Urquijo-Carmona J., Alvarez I., Cisneros C., Martinez H. Mobility and longitudinal diffusion of SF3+ and SF5+ in SF6 // J. Phys. D: Appl. Phys. - 1990. - Vol.23, №.7. - P. 778-783.
De Urquijo-Carmona J., Alvarez I., Martinez H., Cisneros C. Mobility and longitudinal diffusion of SF5 and SF6 in SF6 // J. Phys. D: Appl. Phys. - 1991. - Vol.24, №.5. - P. 664-667.
Nakamura Y. Transport coefficients of electrons and negative ions in SF6 // J. Phys. D: Appl. Phys. - 1988. - Vol.21, №.1. - P. 67-72.
Lisovskiy V.A., Yegorenkov V., Booth J.-P., Landry K., Douai D., Cassagne V. Electron drift velocity in SF6 in strong electric fields determined from rf breakdown curves // J. Phys. D: Appl. Phys. - 2010. - Vol.43, №.38. - P. 385203 (7pp).
Stoffels E., Stoffels W.W., Vender D., Kando M., Kroesen G.M.W., de Hoog F.J. Negative ions in a radio-frequency oxygen plasma // Phys. Rev. E. - 1995. - Vol.51, №.3. - P. 2425-2435.
Schiffer C., Uhlenbusch J. Negative-oxygen-ion detection by a crossed-beam photodetachment technique // Plasma Sources Sci. Technol. - 1995. - Vol.4, №.3. - P. 345-352.
Amemiya H. Diagnostics of negative ions using probe and laser in plasmas (oxygen discharge) // Vacuum. – 2000. – Vol.58, №. 2-3. – P. 100-116.
Katsch H.-M., Goehlich A., Kawetzki T., Quandt E., Dobele H.-F. Attachment-induced ionization instability of a radio frequency excited discharge in oxygen // J. Appl. Phys. - 1999. - Vol.75, №.14. - P. 2023-2025.
Ivanov V.V., Klopovsky K.S., Lopaev D.V., Rakhimov A.T., Rakhimova T.V. Experimental and theoretical investigation of oxygen glow discharge structure at low pressures // IEEE Trans. Plasma Sci. – 1999. – Vol.27, №.5. – P. 1279-1287.
Vender D., Stoffels W.W., Stoffels E., Kroesen G.M.W., de Hoog F.J. Charged-species profiles in electronegative radio-frequency plasmas // Phys. Rev. E. - 1995. - Vol.51, №.3. - P. 2436-2444.
Kaga K., Kimura T., Ohe K. Spatial profile measurements of charged particles in capacitively-coupled RF (13.56 MHz) oxygen discharges // Jpn. J. Appl. Phys. – 2001. – Vol.40, №.1. – P. 330-331.
Bryant P., Dyson A., Allen J.E. Langmuir probe measurements of weakly collisional electronegative RF discharge plasmas // J. Phys. D: Appl. Phys. - 2001. - Vol.34, №.1. - P. 95-104.
Shibata M., Nakano N., Makabe T. O2 RF dischrge structure in parallel plates reactor at 13.56 MHz for material processing // J. Appl. Phys. - 1995. - Vol.77, №.12. - P. 6181-6187.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).