Determination of the laser beam waist

Keywords: laser, Gaussian beam, waist location, wavefront curvature, shear interferometer, two-beam interference, period of the interference fringes

Abstract

Background: An interferometric method for measuring the position of the beam waist of laser radiation, which defines the origin of the coordinate system for the spatial parameters of the beam, is considered. Information about the location of the beam waist plays a crucial role in laser ballistic gravimetry, laser interferometry of lengths, optical metrology, and precision laser barometry.

The aim of the work: Improving the accuracy of beam waist location while simultaneously reducing the complexity of the measurement process.

Materials and methods: A method has been proposed that leverages the dependence of the wavefront curvature of the beam on the distance to the beam waist. The initial laser beam is split into a reference and an information beam using a shear interferometer, forming a nonlocalized interference field in the reflected light. The period of the interference fringes, observed at any cross-section of the interference field, contains information about the position of the beam waist relative to this cross-section. The distance from the beam waist to the plane where the fringe period is registered is calculated using Gaussian optics formulas.

Results: An interferometric method for determining the position of the laser beam waist has been developed, implementing the known relationship between the wavefront curvature in a given cross-section of the radiation beam and the distance from this cross-section to the beam waist. Experimental studies confirmed the viability of the interferometric method for determining the position of the laser beam waist. The obtained results allow recommending this method as the most accurate currently available.

Conclusion: Studies of measurement devices revealed that for the LG-56 laser with a divergence angle of about 10', both methods ensure result consistency with an accuracy of approximately 2%. However, as the divergence angle decreases, particularly with changes in the beam waist position, the accuracy of result consistency diminishes. The cross-section method, recommended by ISO 11146-1 standards, is appropriate for determining the beam waist position for beams with divergence angles exceeding 30", though it involves an error of about 10%. The limitations of this method arise from increased errors in determining the waist position. The interferometric method is effective for identifying beam waists with divergence angles exceeding 5', providing an error of no more than 5%.

Downloads

Download data is not yet available.

Author Biographies

M. M. Dubinin, V. N. Karazin Kharkiv National University

4, Svobody Square, Kharkiv, 61022, Ukraine

V. A. Maslov, V. N. Karazin Kharkiv National University

4, Svobody Square, Kharkiv, 61022, Ukraine

К. І. Muntean, V. N. Karazin Kharkiv National University

4, Svobody Square, Kharkiv, 61022, Ukraine

References

Mohl, S. Kaldun, C. Kunz, F. A. Muller, U. Fuchs, and S. Graf, “Tailored focal beam shaping and its application in laser material processing”, J. Laser Appl. 31, 042019 (2019). https://doi.org/10.2351/1.5123051

Y. Mi, S. Mahade, F. Sikstrom, I. Choquet, S. Joshi, and A. Ancona, “Conduction mode laser welding with beam shaping using a deformable mirror”, Opt. Laser Technol. 148, 107718 (2022). https://doi.org/10.1016/j.optlastec.2021.107718

N. Levichev, P. Herwig, A. Wetzig, and J. R. Duflou, “Towards robust dynamic beam shaping for laser cutting applications”,Proc. CIRP, 111, 746 (2022). https://doi.org/10.1016/j.procir.2022.08.116

A. R. Bakhtari, H. K. Sezer, O. E. Canyurt, O. Eren, M. Shah, and S. Marimuthu, “A Review on Laser Beam Shaping Application in Laser-Powder Bed Fusion”, Adv. Eng. Mater., 26, 2302013 (2024). https://doi.org/10.1002/adem.202302013

O. Savchenko, in: Laser technologies in orthodontic practice – Achievements and prospects, Conference proceedings of the International scientific and practical conference (Seoul, Republic of Korea, 2019), pp. 109-114. https://doi.org/10.36074/22.12.2019.v1.35

K. J. Gasvik, Optical Metrology, 3rd ed., (John Wiley & Sons, Ltd, 2002), 359 p.

H. Le, P. Penchev, A. Henrottin, D. Bruneel, V. Nasrollahi, J. A. Ramos-de-Campos, and S. Dimov, “Effects of Top-hat Laser Beam Processing and Scanning Strategies in Laser Micro-Structuring”, Micromachines, 11, 221 (2020). https://doi.org/10.3390/mi11020221

A. Forbes, F. Dickey, M. DeGama, and A. du Plessis, “Wavelength tunable laser beam shaping”, Opt. Lett., 37, 49 (2012). https://doi.org/10.1364/OL.37.000049

M.A. Moiseev, E.V. Byzov, S.V. Kravchenko, and L. L. Doskolovich, “Design of LED refractive optics with predetermined balance of ray deflection angles between inner and outer surfaces”, Optics Express, 23, A1140 (2015). https://doi.org/10.1364/OE.23.0A1140

C. Rosales-Guzmán, and A Forbes, How to Shape Light with Spatial Light Modulators, SPIE. 30, 57 (2017).

T. Häfner1, J. Strauß, C. Roider, J. Heberle, and M. Schmidt, “Tailored laser beam shaping for efficient and accurate microstructuring”, Applied Physics A, 124, 111 (2018).

https://doi.org/10.1007/s00339-017-1530-0

C. Halbhuber,“Heat conduction joining with the multispot focusing lens: Joining plastics and metal”, PhotonicsViews, 19, 60 (2022). https://doi.org/10.1002/phvs.202200044

A. G. Nalimov, V. V. Kotlyar, S. S. Stafeev, and E. S. Kozlova, “Metalens for Detection of a Topological Charge”, Optical Memory and Neural Networks, 32(S1), S187 (2023). https://doi.org/10.3103/S1060992X23050144

I. V. Petrusenko, and Yu. K. Sirenko, “Generalized Mode-Matching Technique in the Theory of Guided Wave Diffraction. Part 3: Wave Scattering by Resonant Discontinuities”, Telecommunications and Radio Engineering, 72, 555 (2013).

https://www.dl.begellhouse.com/journals/0632a9d54950b268,3ec7deeb5e01313f,2b55c8e851151bf6.html?sgstd=1

A. E. Mandel, and A. S. Perin, “ Study of the efficiency of radiation input and losses at the joints of optical fiber”, Tomsk: TUSUR, 2018. – 54 p. https://studfile.net/preview/16874330

O. B. Kovalev, I. O. Kovaleva, and V. V. Belyaev, “Ray tracing method for simulation of laser beam interaction with random packings of powders”, AIP Conf. Proc., 1939, 020028 (2018), https://doi.org/10.1063/1.5027340

H. Kogelnik and T. Li, “Laser beams and Resonators”, Appl. Opt., 5, 1550 (1966). https://doi.org/10.1364/AO.5.001550

J. A. Arnaud, “Gaussian laser beam-waist radius measuring apparatus”, Patent United States No. 13,612,885 (10 Dec. 1969).

J. A. Arnaud, “Apparatus for locating and measuring the beam waist radius of a Gaussian laser beam”, Patent United States No. 3617755A (11 Febr., 1971).

E. H. A. Granneman and M. J. van der Wiel, “Laser beam waist determination by means of multiphoton ionization”, Rev. Sci. Instrum., 46, 332 (1975). https://doi.org/10.1063/1.1134202

Y. Suzaki and A. Tachibana, “Measurement of the Gaussian laser beam divergence”, Appl. Opt., 16, 1481 (1975). https://doi.org/10.1364/AO.16.001481

G. N, Vinokurov, V. A. Gorbunov, V. P. Dyatlov, V. N. Sizov and A. D. Starikov, “Method for the determination of the position of the focal plane of converging laser beams”, Quantum Electronics, 6, 364 (1976). https://doi.org/10.1070/QE1976v006n03ABEH011092

E. Stijns, “Measuring the spot size of a Gaussian beam with an oscillating wire”, IEEE J. Quantum Electron., QE-16, 1298 (1980). https://doi.org/10.1109/JQE.1980.1070431

Y. C. Kiang and R. W. Lang, “Measuring focused Gaussian beam spot sizes: a practical method”, Appl. Opt., 22, 1296 (1983). https://doi.org/10.1364/AO.22.001296

J. T. Luxon, D. E. Parker, and J. Karkheck, “Waist location and Rayleigh range for higher-order mode laser beams”, Appl. Opt., 23, 2088 (1984). https://doi.org/10.1364/AO.22.001296

S. Nemoto, “Determination of waist parameters of a Gaussian beam”, Appl. Opt., 25, 3859 (1986). https://doi.org/10.1364/AO.25.003859

S. Nemoto, “Waist shift of a Gaussian beam by plane dielectric interfaces”, Appl. Opt., 27, 1833 (1988). https://doi.org/10.1364/AO.27.001833

P. D. Gupta and S. Bhargava, “An experiment with Gaussian laser beam”, Am. J. Phys., 56, 563 (1988). https://doi.org/10.1119/1.15555

S. Nemoto, “Waist shift of a Gaussian beam by a dielectric plate”, Appl. Opt., 28, 1643 (1989). https://doi.org/10.1364/AO.28.001643

P. B. Chipple, “Beam waist and M2 measurement using a finite slit”, Opt. Eng., 33, 461 (1994). https://doi.org/10.1117/12.169739

C. R. C. Wang, C. C. Hsu, W. Y. Liu, W. C. Tsai, and W. B. Tzeng, “Determination of laser beam waist using photoionization time-of-flight”, Rev. Sci. Instrum., 65, 2776 (1994). https://doi.org/10.1063/1.1144615

J. P. Landry, “Optical oblique-incidence reflectivity difference microscopy: Application to label-free detection of reactions in biomolecular microarrays, (University of California, Davis 2008).

J. Wang and J. P. Barton, “Actual focal length of a symmetric biconvex microlens and its application in determining the transmitted beam waist position”, Appl. Opt., 49, 5828 (2010). https://doi.org/10.1364/AO.49.005828

A. Balbuena Ortega, M. L. Arroyo Carrasco, J. A. Dávila Pintle, M. M. Méndez Otero, and M. D. Iturbe Castillo, “New Method to characterize Gaussian beams”, Proc. SPIE 8011, 22nd Congress of the International Commission for Optics: Light for the Development of the World, 80114X (25 October 2011). https://doi.org/10.1117/12.902192

Y. You, J. Urakawa, A. Rawankar, A. Aryshev, H. Shimizu, Y. Honda, L. Yan, W. Huang, and C. Tang, “Measurement of beam waist for an optical cavity based on Gouy phase”, Nuclear Instruments and Methods in Physics Research Section A, 694, 6 (2012). https://doi.org/10.1016/j.nima.2012.07.022

E. A. Bibikova, N. Al-wassiti, and N. D. Kundikova, Diffraction of a Gaussian beam near the beam waist, J. Eur. Opt. Soc.-Rapid Publ., 15, 17 (2019). https://doi.org/10.1186/s41476-019-0113-4

ISO 11146-1:2021 “Lasers and laser-related equipment:  Test methods for laser beam widths, divergence angles and beam propagation ratios  Part 1: Stigmatic and simple astigmatic beams”. https://www.iso.org/obp/ui/#iso:std:iso:11146:-1:ed-2:v1:en

ISO 11146-2:2021 “Lasers and laser-related equipment:  Test methods for laser beam widths, divergence angles and beam propagation ratios  Part 2: General astigmatic beams”. https://www.iso.org/obp/ui/#iso:std:iso:11146:-2:ed-2:v1:en

ISO/TR 11146-3:2004 “Lasers and laser-related equipment:  Test methods for laser beam widths, divergence angles and beam propagation ratios  Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods”. https://www.iso.org/obp/ui/#iso:std:iso:tr:11146:-3:ed-1:v1:en

Published
2024-12-02
Cited
How to Cite
Dubinin, M. M., Maslov, V. A., & MunteanК. І. (2024). Determination of the laser beam waist. Visnyk of V.N. Karazin Kharkiv National University, Series “Radio Physics and Electronics”, (41), 50-60. https://doi.org/10.26565/2311-0872-2024-41-05

Most read articles by the same author(s)