Фізичні, хімічні та плазмохімічні методи функціоналізації та диспергування вуглецевих нанотрубок для їх використання в електроніці

  • В. Г. Удовицкий Научный физико-технологический центр МОН и НАН Украины, Харьков
  • Н. И. Слипченко Харьковский национальный университет радиоэлектроники
  • А. Ю. Кропотов Научный физико-технологический центр МОН и НАН Украины, Харьков
  • Б. Н. Чичков Лазерный центр в Ганновере, Германия
Ключові слова: гнучка електроніка, наноелектроніка, вуглецева електроніка, вуглецеві нанотрубки, функціоналізація, дисперсія, тонкі плівки

Анотація

Вуглецеві нанотрубки (УНТ) вже багато років вивчаються і використовуються в електроніці для виготовлення різних пристроїв. В даний час більшість розроблених практичних застосувань УНТ в електроніці засновані на використанні їх тонких плівок. Існує два методи нанесення тонких плівок УНТ на різні підкладки — осадження різними методами раніше синтезованих нанотрубок і безпосередній синтез УНТ на підкладках. Нанесення тонких плівок УНТ відповідно до першого з вказаних вище способів здійснюється в основному з використанням їх дисперсій в різних рідинах. Обговорюються сучасні фізичні, хімічні і плазмохімічні методи для функціоналізації і диспергування УНТ в воді і неводних рідинах. Найбільша увага приділяється ультразвуковим та плазмовим методам, а також іншим фізичним та хімічним прийомам.

 

 

Завантаження

Дані завантаження ще не доступні.

Біографії авторів

В. Г. Удовицкий, Научный физико-технологический центр МОН и НАН Украины, Харьков
с.н.с.
Н. И. Слипченко, Харьковский национальный университет радиоэлектроники
с.н.с.
А. Ю. Кропотов, Научный физико-технологический центр МОН и НАН Украины, Харьков
с.н.с.
Б. Н. Чичков, Лазерный центр в Ганновере, Германия
с.н.с.

Посилання

Shen G., Fan Z. (ed-s) Flexible Electronics: From Materials to Devices. — World Scientific, 2016. — 476 p.

Logothetidis S. (ed.) Handbook of Flexible Organic Electronics. Materials, Manufacturing and Applications. — Elsevier Ltd., 2015. — 465 p.

Flexible Electronics Market By Components (Display, Battery, Sensors, Memory), By Application (Consumer Electronics, Automotive, Healthcare, Industrial) And Segment Forecast To 2024 / Grand View Research Inc. Report ID: 978-1-68038-838-1, 2016 —70 р. http://www.grandviewresearch.com/industryanalysis/flexible-electronics-market

Gong S., Cheng W. One-Dimensional Nanomaterials for Soft Electronics // Advanced Electronic Materials. — 2017. — Vol. 3, No. 3. — P. 1600314.

Chae S. H., Lee Y. H. Carbon nanotubes and graphene towards soft electronics // Nano Convergence. — 2014. — Vol. 1. — article 15(26).

Peng H., Li Q., Chen T. Industrial applications of carbon nanotubes. — Elsevier Inc., 2017. — 492 p.

Zhong D., Zhang Z., Peng L. -M. Carbon nanotube radio-frequency electronics // Nanotechnology. — 2017. — Vol. 28, No. 21(212001).

Peng L. -M., Zhang Z., Wang S. Carbon nanotube electronics: recent advances // Materials Today. — 2014. — Vol. 17, Iss. 9. — Р. 433–442.

Chen К., Gao W., Emaminejad S., Kiriya D., Ota H., Nyein Y. Y., Takei K., Javey A. Printed Carbon Nanotube Electronics and Sensor Systems // Advanced Materials. — 2016. — Vol. 28, Iss. 22. — Р. 4397–4414.

Wang C., K. Takei K., Takahashi T., Wang A. J. Carbon nanotube electronics — moving forward // Chemical Society Reviews. — 2013. — Vol. 42, Iss.7. — P. 2592–2609.

Courtland R. Moore’s law’s next step: 10 nanometers // IEEE Spectrum Magazine. — 2017. — Vol. 54, Iss. 1. — P. 52–53.

McEuen P. L. Carbon-based electronics // Nature. — 1998. — Vol. 393, No. 6880. — P. 16–17.

Avouris P., Chen Z, Perebeinos V. Carbonbased electronics // Nature Nanotechnology. — 2007. — Vol. 2, No. 10. — P. 605–615.

Nicholas R. J., Mainwood A., Eaves L. Introduction. Carbon-based electronics: fundamentals and device applications // Philosophical Transactions of the Royal Society A. — 2008. — Vol. 366. — P.189–193.

Srivastava A., Marulanda J. M., Xu Y., Sharma A. K. Carbon-Based Electronics. Transistors and Interconnects at the Nanoscale. — Taylor & Francis Group LLC, 2015. — 140 p.

Stokes P., Khondaker S. I. Controlled fabrication of single electron transistors from single-walled carbon nanotubes // Applied Physics Letters. — 2008. — Vol. 92, Iss. 26. — Р. 262107(26).

Seike K., Kanai Y., Ohno Y. et al. Carbon nanotube single-electron transistors with single-electron charge storages // Japanese Journal of Applied Physics. — 2015. — Vol. 54, No. 6. — P. 1(06FF05).

Slipchenko N. I., Udovitskiy V. G, Kropotov A.Yu. The technological aspects of carbon nanotubes based electronic devices fabrication 1. Methods of carbon nanotubes purification // Radioelectronics & Informatics. — 2010, No.1. — P. 3–15 (in Russian).

Cai Le, Wang C. Carbon Nanotube Flexible and Stretchable Electronics // Nanoscale Research Letters. — 2015. — Vol. 10:320.

Wang Q., Moriyama H. Carbon NanotubeBased Thin Films: Synthesis and Properties. — Сh. 23 (P. 487–514) in book: Yellampalli S. (ed.) Carbon nanotubes — synthesis, characterization, applications. — InTech, 2011. — 514 p.

Saha A., Jiang C, Mart A. A. Carbon nanotube networks on different platforms // Carbon. — 2014. — Vol. 79. — P. 1–18.

Chen Y., Zhang Y., Hu Y., Kang L, Zhang S, Xie H, Liu D, Zhao Q, Li Q, Zhang J. State of the Art of Single-Walled Carbon Nanotube Synthesis on Surfaces // Advanced Materials. — 2014. — Vol. 26, No. 34. — Р. 5898–5922.

Cao Q., Rogers J. A. Ultrathin Films of SingleWalled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects // Advanced Materials. — 2009. — Vol. 21, Iss. 1. — P. 29–53.

Fu L., Yu A. M. Carbon nanotubes based thin films fabrication, characterization and applications // Review of Advanced Materials Science. — 2014. — Vol. 36, No. 1. — P. 40– 61.

Hu L., Hecht D. S., Grüner G. Carbon Nanotube Thin Films: Fabrication, Properties, and
Applications // Chemical review. — 2010. — Vol. 110, Iss. 10. — 5790–5844.

Hou P. -H., Liu C., Cheng H. -M. Purification of carbon nanotubes // Carbon. — 2008. — Vol. 46, Iss. 15. — P. 2003–2025.

Arepalli S., Nikolaev P., Gorelik O., Hadjiev V. G., Holmes W., Files B., Yowell L. Protocol for the characterization of single-wall carbon nanotube material quality // Carbon. — 2004. — Vol. 42, Iss. 8/9. — P.1783–1791.

Udovitskiy V. G. Methods of carbon nanotubes purity estimation and properties characterization // Physical Surface Engineering. — 2009. — Vol. 7, No. 4. — P. 351–373 (in Russian).

Lehman J. H., Terrones M., Mansfield E., Hurst K. E. Meunier V. Evaluating the characteristics of multiwall carbon nanotubes // Carbon. — 2011. — Vol. 49, Iss.8. — P. 2581– 2602.

Makama A. B., Salmiaton A., Abdullah N., Choong T. S. Y., Saion E. B. Recent Developments in Purification of Single Wall Carbon Nanotubes // Separation Science and Technology. — 2014. — Vol. 49, Iss. 17. — Р. 2797–2812.

Kharissova O. V., Kharisov B.I. Solubilization and Dispersion of Carbon Nanotubes. — Springer International Publishing, 2017. — 250 р.

Geckeler K. E., Premkumar T. Carbon nanotubes: are they dispersed or dissolved in liquids? // Nanoscale Research Letters. — 2011. — Vol. 6. — P. 136(3).

Badamshina E. R., Gafurova M. P., Estrin Ya. I. Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes // Russian Chemical Reviews. — 2010. — Vol. 79. — No. 11. — P. 945–979.

Clancy A. J., Anthony D. B., Fisher S. J., Leese H. S., Roberts C. S., Shaffer M. S. P. Reductive dissolution of supergrowth carbon nanotubes for tougher nanocomposites by reactive coagulation spinning // Nanoscale. — 2017. — Vol. 9, Iss. 25. — P. 8764–8773.

Ramos E., Pardo W. A., Mir M., Samitie J. Dependence of carbon nanotubes dispersion kinetics on surfactants // Nanotechnology. — 2017. — Vol. 28, No. 13. — P. 135702.

Kim S. W., Kim T., Kim Y. S., Choi H. S., Lim H. J., Yang S. J., Chong R. P. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers // Carbon — 2012. — Vol. 50, Iss. 1. — P. 3–33.

Tasis D., Tagmatarchis N., Georgakilas V., Prato M. Soluble Carbon Nanotubes // Chemistry — A European Journal. — 2003. — Vol. 9, Iss. 17. — P. 4000–4008.

Kharissova O. V., Kharisov B. I., Ortiz E. G. C. Dispersion of carbon nanotubes in water and non-aqueous solvents // RSC Advances. — 2013. — Vol. 3, Iss.47. — P. 24812–24852.

Kharisov B. I, Kharissova O. V., Dimas A. V. The dispersion, solubilization and stabilization in «solution» of single-walled carbon nanotubes // RSC Advances. — 2016. — Vol. 6, Iss. 73. — P. 68760–68787.

Balasubramanian K., Burghard M. Chemically Functionalized Carbon Nanotubes // Small. — 2005. — Vol. 1, No. 2. — Р. 180–192.

Jeon In-Y., Chang D. W., Kumar N. A., Baek J-B. Functionalization of Carbon Nanotubes. —
Ch. 5 (P. 91–110) in book: Yellampalli S. (ed.) Carbon Nanotubes — Polymer Nanocomposites. — InTech, 2011. — 396 p.

Ma P-C, Siddiqui N. A., Marom G., Kim J-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review // Composites: Part A. — 2010. — Vol. 41, Iss. 10. — P. 1345–1367.

Chen L., Xie H., Yu W. Functionalization Methods of Carbon Nanotubes and its Applications. — Ch. 9 (P. 213–232) in book: Marulanda J. M. (ed.) Carbon Nanotubes Applications on Electron Devices. — InTech, 2011. — 556 p.

Sadegh H., Shahryari-Ghoshekandi R. Functio nalization of carbon nanotubes and its application in nanomedicine: A review // Nanomedicine Journal. — 2015. — Vol. 2, Iss. 4. — P. 231–248.

Backes C. Noncovalent Functionalization of Carbon Nanotubes. Fundamental Aspects of Dispersion and Separation in Water, Doctoral Thesis accepted by University ErlangenNürnberg, Germany, 2012. — 203 p.

Vaisman L., Wagner H. D., Marom G. The role of surfactants in dispersion of carbon nanotubes // Advances in Colloid and Interface Science. — 2006. — Vol. 128–130. — P. 37–46.

Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J. et al. Crystalline ropes of metallic carbon nanotubes // Science. — 1996. — Vol. 273, Iss. 5274. — P. 483–487.

Strano M. S., Moore V. C., Miller M. K., Allen M. J., Haroz E.H., Kittrell C., Hauge R. H., Smalley R. E. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes // Journal of nanoscience and nanotechnology. — 2003. — Vol. 3, Iss. 1–2. — P. 81–86.

Rastogi R., Kaushal R., Tripathi S. K., Sharma A. L., Kaur I., Bharadwaj L. M. Comparative study of carbon nanotube dispersion using surfactants // Journal of Colloid and Interface Science. — 2008. — Vol. 328, Iss. 2. — P. 421–428.

Cui H., Yan X., Monasterio M., Xing F. Effects of Various Surfactants on the Dispersion of WCNTs-OH in Aqueous Solution // Nanomaterials. — 2017. — Vol. 7., Iss. 9(262).

Madni I., Hwang C. -Y., Park S-D., Choa Y-Ho, Kim H-T. Mixed surfactant system for stable suspension of multiwalled carbon nanotubes // Colloids and Surfaces A: Physicochemical and Engineering Aspects. — 2010. — Vol. 358, Iss. 1–3. — P. 101–107.

Sohrabi B., Poorgholami-Bejarpasi N., Nayeri N. Dispersion of Carbon Nanotubes Using Mixed Surfactants: Experimental and Molecular Dynamics Simulation Studies // The Journal of Physical Chemistry, B. — 2014. — Vol. 118, Iss.11. — P. 3094−3103.

Poorgholami-Bejarpasi N., Sohrabi B. Role of surfactant structure in aqueous dispersions of carbon nanotubes // Fluid Phase Equilibria. — 2015. — Vol. 394. — P. 19–28.

Chen G., Liu J., Yang J., Xie J., Liu Z., Li R., Li X. A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene // Polymer. — 2009. — Vol. 50, Iss. 24. — P. 5787–5793.

Amenta V., Aschberger K. Carbon nanotubes: potential medical applications and safety concerns // Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. — 2015. — Vol. 7, Iss. 3. — P. 371–386.

Moulton S. E., Minett A. I., Murphy R., McCarthly D., Murphy R., Blau W., Ryan K. Biomolecules as selective dispersants for carbon nanotubes // Carbon. — 2005. — Vol. 43, Iss. 9. — P. 1879–1884.

Rahman Md. M., Younes H., Subramanian N., Ghaferi A. Al. Optimizing the Dispersion Conditions of SWCNTs in Aqueous Solution of Surfactants and Organic Solvents // Journal of Nanomaterials. — Vol. 2014. — Article ID 102621(11).

Urbanski K., Platek B., Falat T., Felba J., Marcq F. Novel Method for CNTs Dispersion in Fluids. — Proceedings of 34-th International Microelectronics and Packaging IMAPSCPMT Poland Conference, Wrocław, 22–25 September 2010. — P. 22–25.

Alsharefa J. M. A., Tahaa M. R., Khan T. A. Physical dispersion of nanocarbons in composites — a review // Technology Journal. — 2017. — Vol. 79, Iss. 5. — P. 69–81.

Samukawa S., Hori M., Rauf S., Tachibana K., Bruggeman P., Kroesen G., Whitehead J. C., Murphy A. B., Gutsol A. F., Starikovskaia S. et al. The 2012 Plasma Roadmap // Journal of Physics D: Applied Physics. — 2012. — Vol. 45, No. 25. — P. 253001 (37 p.).

Adamovich I., Baalrud S. D., Bogaerts A.. Bruggeman P. J., Cappelli M., Colombo V., Czarnetzki U., Ebert U., Eden J. G., Favia P. et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology // Journal of Physics D: Applied Physics. — 2017, No. 45. — P. 323001 (46).

Ostrikov K., Xu S. Y. Plasma-aided nanofabrication. — Wiley-VCH, Germany, 2007. — 315 p.

Sankaran M. (ed.) Plasma Processing of Nanomaterials. — CRC Press Taylor & Francis Group, 2012. — 432 p.

Mieno T. (ed.) Plasma Science and Technology: Progress in Physical States and Chemical Reactions. — InTech, 2016. — 535 p.

Kumar K. A., Arvind A. Plasma Processing of Nanomaterials for Functional Applications — A Review // Nanoscience and Nanotechnology Letters. — 2012. — Vol. 4, No. 3. — Р. 228– 250.

Ostrikov K., Neyts E. C., Meyyappan M. Plasma Nanoscience: from Nano-Solids in Plasmas to Nano-Plasmas in Solids // Advances in Physics. — 2013. — Vol. 62, No. 02. — Р. 113–124.

Trulli M. G., Sardella E., Palumbo F., Palazzo G., Giannossa L. C., Mangone M., Comparelli R., Musso S., Favia P. Towards highly stable aqueous dispersions of multiwalled carbon nanotubes: the effect of oxygen plasma functionalization // Journal of Colloid and Interface Science. — 2017. — Vol. 491. — P. 255–264.

Chen C., Ogino A., Wang X., Nagatsu M. Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water // Applied Physics Letters. — 2010. — Vol. 96, Iss. 13. — P. 131504 (3).

Pourfayaz F., Mortazavi Y., Khodadadi A., Jafari S. H., Boroun S., Naseh M. V. A comparison of effects of plasma and acid functionalizations on structure and electrical property of multi-wall carbon nanotubes // Applied Surface Science. — 2014. — Vol. 295. — P. 66–70.

Nair L. G., Mahapatra A. S., Gomathi N., Joseph K., Neogi S. C. P., Nair C. P. R. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube // Applied Surface Science. — 2015. — Vol. 340. — P. 64–71.

Wang W-H., Huang B-C., Ye D-Q. Oxidative treatment of multi-wall carbon nanotubes with oxygen dielectric barrier discharge plasma // Surface and Coatings Technology. — 2011. — Vol. 205, Iss. 21–22. — P. 4896–4901.

Chen C., Liang B., Ogino A. Oxygen Functionalization of Multiwall Carbon Nanotubes by Microwave-Excited Surface-Wave Plasma Treatment // Journal of Physical chemistry C. — 2009. — Vol. 113. — P. 7659–7665.

Chen C., Ogino A., Wang X., Nagatsu M. Oxygen functionalization of multiwall carbon nanotubes by Ar/H2O plasma treatment // Diamond and Related Materials. — 2011. — Vol. 20, Iss. 2. — P. 153–156.

Mishra P., Islam H. S. S. Surface modification of MWCNTs by O2 plasma treatment and its exposure time dependent analysis by SEM, TEM and vibrational spectroscopy // Superlattices and Microstructures. — 2013. — Vol. 64. — P. 399–407.

Xu T., Yang J., Liu J., Fu Q. Surface modification of multi-walled carbon nanotubes by O2 plasma // Applied Surface Science. — 2007. – Vol. 253, Iss. 22. — P. 8945–8951.

Hussain S., Amade R., Jover E., Bertran E. Functionalization of carbon nanotubes by water plasma // Nanotechnology. — 2012. — Vol. 23, No. 38. — P. 385604(8).

Felten A., Bittencourt C., Pireaux J. J. G., Lier V., Charlier J. C. Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments // Journal of Applied Physics. — 2005. — Vol. 98, Iss. 7. — P. 074308.

Zschoerpera N. P., Katzenmaier V., Vohrer U., Haupt M., Oehr C., Hirth T. Analytical investigation of the composition of plasma-induced functional groups on carbon nanotube sheets // Carbon. — 2009. — Vol. 47, Iss. 9. — P. 2174– 2185.

Zhao B., Zhang L., Wang X. Surface functionalization of vertically-aligned carbon nanotube forests by radio-frequency Ar/ O2 plasma // Carbon. — 2012. — Vol. 50, Iss. 8. — P. 2710–2716.

Vasilev K., Ramiasa M. R. Plasma Nanoengineering and Nanofabrication // Nanomaterials. — 2016, Vol. 6, Iss. 7. — 122 p.

Brandenburg R. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments // Plasma Sources Science and Technology. — 2017. — Vol. 26, Iss. 5. — Р. 053001(29).

Naseh M. V., Khodadadi A. A., Mortazavi Y., Sahraei O. A., Pourfayaz F., Sedghi S. M. Functionalization of Carbon Nanotubes Using Nitric Acid Oxidation and DBD Plasma // International Journal of Chemical and Biological Engineering. — 2009. — Vol. 2, Iss.2. — P. 66–68.

Abdel-Fattah E., Ogawa D., Nakamura K. Oxygen functionalization of MWCNTs in RF-dielectric barrier discharge Ar/O2 plasma // Journal of Physics D: Applied Physics. — 2017. — Vol. 50, No. 26. — Р. 265301.

Azarenkov N. A., Dudin S. V., Zykov A. V., Farenik V. I., Yakovin S. D. Ion-plasma systems with combined electrical and magnetic fields for micro- and nanotechnologies // Journal of Surface Physics and Engineering. — 2017. — Vol. 2, No. 2–3. — P. 119–143 (in Ukrainian).

Kulkarni S. K. Synthesis of Nanomaterials — I (Physical Methods) — Ch. 3 in book: Kulkarni S. K. (ed.) Nanotechnology: Principles and Practices. — Springer, 2015. — 403 p.

Tseng W. S., Tseng C. Y., Kuo C. T. Effects of Gas Composition on Highly Efficient Surface Modification of Multi-Walled Carbon Nanotubes by Cation Treatment // Nanoscale Research Letteers. — 2009. — Vol. 4. — P. 234–239.

Tseng W. S, Tseng C. Y., Kuo C. T. Functionalizing multi-walled carbon nanotubes using ECR plasma and a mild nitric acid treatment // Journal of Nanoscience and Nanotechnology. — 2009. — Vol. 9, Iss. 12. — P. 6889–6895.

Iyer G. R. S., Papakonstantinou P., Abbas G., Maguire P. D. Dual Role of Purification and Functionalisation of Single Walled CNT by Electron Cyclotron Resonance (ECR) Nitrogen Plasma //e-Journal of Surface Science and Nanotechnology. — 2009. — Vol. 7. — P. 337– 340.

Kolacyak D., Ihde J., Merten C., Hartwig A., Lommatzsch U. Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet // Colloid Interface Science. — 2011. — Vol. 359, Iss. 1. — P. 311–317.

Bruggeman P. J., Kushner M. J., Locke B. R, Gardeniers J. G. E., Graham W. G., Graves D. B., Hofman-Caris R. C., Maric D., Reid J. P., E Ceriani E. et al. Plasma–liquid interactions: a review and roadmap // Plasma Sources Science and Technology. — 2016. — Vol. 25. — P. 053002 (59).

Hahn A., Barcikowski S., Chichkov B. N. Influences on Nanoparticle Production during Pulsed Laser Ablation // Journal of Laser Micro/Nanoengineering. — 2008. — Vol. 3, No. 2. — Р. 73–77.

Barberio M., Antici P. Laser-Plasma Driven Synthesis of Carbon-Based Nanomaterials // Scientific Reports. — 2017. — Iss. 7. — P. 12009 (7).

Chen Q., Li J., Li Y. A review of plasma– liquid interactions for nanomaterial synthesis // Journal of Physics D: Applied Physics. — Vol. 48, No. 42. — Р. 424005 (26).

Shirafuji T., Noguchi Y., Yamamoto T. Functionalization of Multiwalled Carbon Nanotubes by Solution Plasma Processing in Ammonia Aqueous Solution and Preparation of Composite Material with Polyamide 6 // Japanese Journal of Applied Physics. — 2013. — Vol. 52, No. 12R. — P. 125101.

Lin L., Wang Q. Microplasma: A New Gene ration of Technology for Functional Nanomaterial Synthesis // Plasma Chemistry and Plasma Processing. — 2015. — Vol. 35, Iss. 6. — P. 925–962.

Imasaka K., Suehiro J., Kanatake Y., Kato Y., Hara M. Preparation of water-soluble carbon nanotubes using a pulsed streamer discharge in water // Nanotechnology. — 2006. —
Vol. 17. — No. 14. — P. 3421(5).

Imasaka K., Kato Y., Suehiro J. Enhancement of microplasma-based water-solubilization of single-walled carbon nanotubes using gas bubbling in water // Nanotechnology. — 2007. – Vol. 18, No. 33. — P. 335602 (7).

Guo J., Li Y., Wu S., Li W. The effects of γ-irradiation dose on chemical modification of multi-walled carbon nanotubes // Nanotechnology. — 2005. — Vol. 16, No. 10. – P. 2385–2388.

Xu Z., Min C., Chen L., Liu L., Chen G., Ning Wu N. Modification of surface functionality and interlayer spacing of multi-walled carbon nanotubes using γ-rays // Journal of Applied Physics. — 2011. — Vol. 109. — P. 054303(7).

Jovanovic S. P., Markovic Z. M., Kleut D. N. A novel method for the functionalization of
γ-irradiated single wall carbon nanotubes with DNA // Nanotechnology. — 2009. — Vol. 20, No. 44. — P. 445602 (7).

Safibonab B., Reyhani A., Golikand A. N., Mortazavi S. Z., Mirershadi S., Ghoranneviss M. Improving the surface properties of multiwalled carbon nanotubes after irradiation with gamma rays // Applied Surface Science. — 2011. — Vol. 258, Iss. 2. — P. 766–773.

Xu Z., Chen L., Zhou B., Li Y., Li B., Niu J., Shan M., Guo Q., Wang Z., Qian X. Nanostructure and property transformations of carbon systems under γ-ray irradiation: a review // RSC Advances. — 2013. — Vol. 3., Iss. 27. — P. 10579–10597.

Li J., Tang T., Zhang X., Li S., Li M. Dissolution, characterization and photofunctionalization of carbon nanotubes // Materials Letters. — 2007. — Vol. 61, Iss. 22. — P. 4351–4353.

Lebrón-Colón M., Meador M. A., Lukco D., Solá F., Santos-Pérez J., McCorkle L. S. Surface oxidation study of single wall carbon nanotubes // Nanotechnology. — 2011. — Vol. 22, No. 45. — Р. 455707.

Krysak M., Parekh B., Debies T. Gas-phase surface functionalization of multi-walled carbon nanotubes with vacuum UV photooxidation // Journal of Adhesion Science and Technology. — 2007. — Vol. 21, Iss. 10. — P. 999–1007.

Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F. R. E. Smalleyet R. E. C60: Buckminsterfullerene // Nature. — 1985. — Vol. 318, No. 6042. — Р. 162–164.

Chuang С. -H., Sow C. -H., Lin M-T. SpectroMicroscopic Study of Laser-Modified Carbon Nanotubes — Ch. 11 (P. 247–266) in book: Marulanda J. M. (ed.) Electronic Properties of Carbon Nanotubes — InTech, 2011. — 680 p.

Aumanen J., Johansson A., Herranen O., Myllyperkiö P., Pettersson M. Local photooxidation of individual single walled carbon nanotubes probed by femtosecond four wave mixing imaging // Physical Chemistry Chemical Physics. — 2015. — Vol. 17, Iss.1. —P. 209– 216.
Опубліковано
2017-11-14
Як цитувати
Удовицкий, В., Слипченко, Н., Кропотов, А., & Чичков, Б. (2017). Фізичні, хімічні та плазмохімічні методи функціоналізації та диспергування вуглецевих нанотрубок для їх використання в електроніці. Журнал фізики та інженерії поверхні, 2(2-3), 143 - 163. Retrieved із https://periodicals.karazin.ua/pse/article/view/9576