INFLUENCE OF DECOHERENCE PARAMETERS ON THE EFFICIENCY OF PRESERVING ENTANGLEMENT OF TWO-QUBIT WERNER STATES THROUGH QUANTUM MEASUREMENTS

Keywords: quantum entanglement, Werner states, decoherence, entanglement preservation, open quantum systems, entanglement measure, Lindblad equation

Abstract

In this work we analyse how a protocol of joint, periodically repeated measurements influences the preservation of state coherence and thereby maintains entanglement in two-qubit systems prepared in a Werner state. By modeling the linear interactions of each qubit with independent dissipative environments (with coefficients , ) together with the dispersive interactions (with coefficients ), we introduce the algorithmic “efficiency” parameter , which quantitatively characterises how strongly these measurements slow down the loss of coherence and support the underlying quantum correlations..

For the maximally entangled input state (Werner state parameter ), the efficiency  shows a hyperbolic dependence on the dispersive‐coupling parameter  in the strong linear-coupling regime, when , In the opposite regime, when , efficiency asymptotically approaches unity, indicating a loss of capability to suppress decoherence in environments dominated by dispersive interactions. A comprehensive numerical study has been performed on the entanglement-preservation efficiency across all three relevant parameters—namely, the linear and dispersive couplings of each qubit to the environment and the Werner-state parameter that quantifies the initial entanglement. The algorithm’s performance is analyzed in various limiting cases, including the minimal and maximal values of the Werner parameter examined in this work, as well as scenarios in which the linear-interaction strength approaches the dispersive one.

The results obtained indicate that carefully tailored measurement schemes, combined with a high level of quantum-system entanglement, can effectively neutralize the deleterious influence of the environment. This paves the way for formulating detailed, quantitatively substantiated recommendations for tuning dynamic coherence-protection procedures that enhance the reliability of entanglement preservation across a variety of quantum algorithms, including entanglement-based quantum-cryptography protocols (BB84, E91/BBM92, DI-QKD, as well as multi-correlation quantum secret-sharing schemes such as HBB99) and variational algorithms for materials simulation (VQE, ADAPT-VQE, QITE, VQSD and related UCC-based approaches).

Downloads

Download data is not yet available.

References

1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Rev. Mod. Phys., 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865
2. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000), 676 p. ISBN: 9780521635035
3. R. F. Werner. Phys. Rev. A, 40, 4277 (1989). https://doi.org/10.1103/PhysRevA.40.4277
4. A. Peres. Phys. Rev. Lett., 77, 1413 (1996). https://doi.org/10.1103/PhysRevLett.77.1413
5. W. H. Zurek. Rev. Mod. Phys., 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715
6. M. Schlosshauer. Decoherence and the Quantum-to-Classical Transition, Springer, Berlin Heidelberg (2007), 416 p. ISBN: 9783540357735
7. E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I. O. Stamatescu. Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd ed., Springer, Berlin Heidelberg (2003), 508 p. ISBN: 9783540003908
8. H. P. Breuer and F. Petruccione. The Theory of Open Quantum Systems, Oxford University Press, Oxford (2002), 648 p. ISBN: 9780198520634
9. T. Yu and J. H. Eberly. Science, 323, 598 (2009). https://doi.org/10.1126/science.1167343
10. L. Aolita, F. de Melo, and L. Davidovich. Rep. Prog. Phys., 78, 042001 (2015). https://doi.org/10.1088/0034-4885/78/4/042001
11. M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. Souto Ribeiro, and L. Davidovich. Science, 316, 579 (2007). https://doi.org/10.1126/science.1139892
12. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche. Phys. Rev. Lett., 77, 4887 (1996). https://doi.org/10.1103/PhysRevLett.77.4887
13. W. K. Wootters. Phys. Rev. Lett., 80, 2245 (1998). https://doi.org/10.1103/PhysRevLett.80.2245
14. C. H. Bennett and S. J. Wiesner. Phys. Rev. Lett., 69, 2881 (1992). https://doi.org/10.1103/PhysRevLett.69.2881
15. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Phys. Rev. Lett., 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895
16. G. Lindblad. Commun. Math. Phys., 48, 119 (1976).
Published
2025-05-28
How to Cite
Konovalenko, O. M., & Maizelis, Z. A. (2025). INFLUENCE OF DECOHERENCE PARAMETERS ON THE EFFICIENCY OF PRESERVING ENTANGLEMENT OF TWO-QUBIT WERNER STATES THROUGH QUANTUM MEASUREMENTS. Journal of V. N. Karazin Kharkiv National University. Series Physics, (42), 22-26. https://doi.org/10.26565/2222-5617-2025-42-02