STRUCTURAL RELAXATION AND DIFFUSION OF THE LABILE COMPONENT IN NON-STOCHIOMETRICAL CUPRATES ReBa2Cu3O7-Δ (Re = Y, HO) AND ASSOCIATED OXIDES (overview)

Keywords: ReBa2Cu3O7-δ single crystals, annealing, structural relaxation, labile oxygen, pseudogap anomaly, metal-dielectric transition, accompanying oxides

Abstract

The paper investigates the effect of annealing at room temperature on the electrical resistance in the ab-plane ρab(T) of ReBa₂Cu₃O₇ (Re = Y, Ho) single crystals with oxygen deficiency. It was found that the reduction of oxygen content induces phase segregation, accompanied by the diffusion of a labile component and structural relaxation in the sample volume, confirming the critical role of oxygen deficiency in determining the structural and electrophysical properties of these materials.

Annealing at room temperature with varying oxygen deficiencies results in an expansion of the linear range of ρab(T) and a narrowing of the temperature region where the pseudogap regime occurs, highlighting the importance of oxygen concentration in forming the electronic structure. Excess conductivity follows an exponential temperature dependence over a broad temperature range, indicating the presence of nonlinear effects. The pseudogap temperature dependence is well described within the BKD-BEK crossover theory, confirming a transition between two modes of material behavior.

Replacing yttrium with holmium (Re = Ho) affects the charge distribution in the CuO planes, leading to disorder in the oxygen subsystem, which alters the electronic structure, manifesting as shifts in temperature regions corresponding to metal-insulator transitions and pseudogap anomaly. Thus, the results demonstrate that controlling the oxygen content and chemical composition of ReBa₂Cu₃O₇-δ crystals is an effective method for managing their electrophysical properties. The obtained short-range interatomic potential values can also be used for systematic studies of the complex behavior and defect chemistry of these materials at the atomic level. The use of "atomic scale techniques" allows not only for improving the physicochemical parameters of various rare earth oxides (REO) compounds but also for validating the adequacy of numerous current theoretical studies.

Downloads

References

B. P. Stojkovic, D. Pines. Phys. Rev. B, 55, 13, 8567 (1997). https://doi.org/10.1103/PhysRevB.55.8576

В. Н. Зверев, Д. В. Шовкун. Письма в ЖЭТФ, 72, 2, 103 (2000).

I. A. Chaban. Physics of the Solid State, 50, 803 (2008).

А. А. Мамалуй, Л. С. Палатник, К. В. Беднов, М. А. Оболенський, А. В. Бондаренко. ФНТ, 19, 11, 1180 (1993).

M. A. Obolenskii, R. V. Vovk, A. V. Bondarenko, N. N. Chebotaev. Low Temp. Phys., 32, 571 (2006). http://dx.doi.org/10.1063/1.2215373

K. Mitsen, O. Ivanenko. J. Exp. Theor. Phys., 100, 1082 (2005). https://doi.org/10.1134/1.1995792

I. A. Chaban. Phys. Solid State Phys., 5, 769 (2008). https://doi.org/10.1134/S1063783408050016

A. A. Abrikosov. Phys. Rev. B, 74, 180505 (2006). https://doi.org/10.1103/PhysRevLett.93.097004

Y. Kohsaka, K. Iwaya, S. Satow, T. Hanaguri, M. Azuma, M. Takano, H. Takagi. Phys. Rev. Lett., 93, 097004 (2004). https://doi.org/10.1103/PhysRevLett.93.097004

R. V. Vovk, M. A. Obolenskii, A. A. Zavgorodnii, A. V. Bondarenko, I. L. Gulatis, N. N. Chebotaev. Low Temp. Phys., 33, 710 (2007) https://doi.org/10.1063/1.2746848.

D. M. Ginsber (ed). Physical Properties of High Temperature Superconductors., World Scientific, Singapore (1990), 712 р. https://doi.org/10.1142/1023

T. Krekels, H. Zou, G. V. Tendeloo, D. Wagener, M. Buchgeister, S. Hosseini, Herzog. Physica C, 196, 363 (1992).

R. Vovk, N. Vovk, A. Samoilov, I. Goulatis, A. Chroneos. Solid State Commun., 170, 6 (2013).

В. В. Мощалков, І. Г. Муттік, Н. А. Самарін, Ю. Д. Третяков, А. Р. Каул, І. Є. Грабой, Ю. Г. Метлін. ФНТ, 14, 988 (1988).

R. V. Vovk, Z. F. Nazyrov, M. A. Obolenskii, I. L. Goulatis, A. Chroneos, V. M. Pinto Simoes. Philos. Mag., 91, 2291 (2011). https://doi.org/10.1080/14786435.2011.573705

N. F. Mott. Metal-insulator transitions London, CRC Press (1990), 296 p.

Y. A. Izyumov, E. Z. Kurmaev. Phys. Usp., 178, 1307 (2008).

D. H. S. Smith, R. V. Vovk, C. D. H. Williams, A. F. G. Wyatt. New J. Phys., 8, 128 (2006). https://doi.org/10.1088/1367-2630/8/8/128

I. N. Adamenko, K. E. Nemchenko, V. I. Tsyganok, A. I. Chervanev. Low Temp. Phys., 20, 498 (1994).

R. V. Vovk, C. D. H. Williams, A. F. G. Wyatt. Phys. Rev. B, 69, 144524 (2004). https://doi.org/10.1103/PhysRevB.69.144524

A. J. Matthews, K. V. Kavokin, A. Usher, M. E. Portnoi, M. Zhu, J. D. Gething, M. Elliott, W. G. Herrenden-Harker, K. Phillips, D. A. Ritchie, M. Y. Simmons, C. B. Sorensen, O. P. Hansen, O. A. Mironov, M. Myronov, D. R. Leadley, M. Henini. Phys. Rev. B, 70, 075317 (2004). https://doi.org/10.1103/PhysRevB.70.075317

P. J. Curran, V. V. Khotkevych, S. J. Bending, A. S. Gibbs, S. L. Lee, A. Mackenzie. Phys. Rev. B, 84, 104507 (2011). https://doi.org/10.1103/PhysRevB.84.104507

D. De Fontaine, G. Ceder, M. Asta. J. Less Common Met., 108, 164 (1990). https://doi.org/10.1016/0254-0584(93)90189-S

R. V. Vovk, M. A. Obolenskii, A. A. Zavgorodniy, A. V. Bondarenko, I. L. Goulatis, and A. Chroneos. J. Mater. Sci: Mater in Electron, 18, 811 (2007).

J. L. Tallon, C. Bernhard, H. Shaked, R. L. Hitterman, J. D. Jorgensen. Phys. Rev. B, 51, 12911 (1995). https://doi.org/10.1103/PhysRevB.51.12911

N. Hirosaki, S. Ogata, C. Kocer. J. Alloys Compd., 351, 31 (2003). http://dx.doi.org/10.1016/S0925-8388(02)01043-5

W. H. Zachariasen. Phys. Chem., 123, 134 (1926).

L. Pauling. Z. Kristallogr., A 69, 415 (1928).

D. T. Cromer. J. Phys. Chem., 61, 753 (1957).

H. L. Yakel. Acta Cryst., B 35, 564 (1979).

T. Schleid, G. Meyer. Less-Common Met., 149, 73 (1989).

E. Hubbert-Paletta, H. Mueller-Buschbaum. Anorg. Allg. Chem., 363, 145 (1968).

R. W. Grimes, G. Busker, M. A. McCoy. Ber. Bunsen. Phys. Chem., 98, 740 (1994).

S. K. Mishra, S. K. Samdarshi, R. K. Singh. J. Phys. Chem. Solids, 56, 999 (1995).

H. Mizoguchi, H. Hosono. J. Am. Ceram. Soc., 87, 1187 (2004).

N. Izyumov, E. Kurmaev. Usp. Fiz. Nauk, 176, 1241 (2006).

A. A. Bosak, I. P. Zibrov, M. G. Semenov. J. Struct. Chem., 49, 342 (2008).

J. P. Attfield, A. J. Williams. Physica B, 404, 2989 (2009). https://doi.org/10.1103/PhysRevB.73.104409

C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveau. Z. Anorg. Allg. Chem., 540, 15 (1987).

A. A. Tsirlin, A. N. Vasiliev, I. Orobchenko, H. Nakamura, M. Taguchi. J. Mater. Chem., 20, 1008 (2010). https://doi.org/10.1039/B921746F

R. V. Vovk, M. A. Obolenskii, A. V. Bondarenko, Z. F. Nazyrov, N. N. Chebotaev. Low Temp. Phys., 38, 899 (2012). https://doi.org/10.1063/1.4752436

S. Naito, M. Sano, H. Imai, T. Akiyama. Solid State Commun., 2005, 136, 100 (2005). https://doi.org/10.1016/j.ssc.2005.06.003

H. Mizoguchi, R. Shiratsuchi, T. Kimura, T. Tani. Chem. Mater., 14, 1450 (2002). https://doi.org/10.1021/cm011527u

M. A. Obolenskii, R. V. Vovk, N. N. Chebotaev, I. L. Goulatis. J. Appl. Phys., 110, 073920 (2011). https://doi.org/10.1063/1.3646470

K. E. Nemchenko, A. I. Chervanev, D. V. Moiseenko. Mater. Res. Bull., 48, 3503 (2013). https://doi.org/10.1016/j.materresbull.2013.06.055

G. J. Snyder, E. S. Toberer. Nat. Mater., 7, 105 (2008). https://doi.org/10.1038/nmat2090

R. W. Cahn, P. Haasen, E. J. Kramer. Materials science and technology. VCH-Publishers, Weinheim (1991), 405 p.

R. D. Shannon., A32, 751 (1976). https://doi.org/10.1107/S0567739476001551.

J. B. Goodenough. J. Solid State Chem., 5, 144 (1967). https://doi.org/10.1016/0022-4596(67)90062-0.

H. Fjellvag, F. Gronvold. Acta Chem. Scand., 37, 745 (1983).

A. I. Gusev, A. A. Rempel, A. V. Kaverin. Solid State Ionics, 101, 285 (1997). https://doi.org/10.1016/S0167-2738(97)00462-4

T. Minami, T. Miyata, T. Yamamoto. Thin Solid Films, 372, 173 (2000) https://doi.org/10.1016/S0040-6090(00)01094-0 .

H. Sawada, T. Osawa, S. Motomura, H. Muta, K. Kurosaki. J. Alloys Compd., 389, 197 (2005). https://doi.org/10.1016/j.jallcom.2004.08.079

J. F. Scott, H. L. Tuller, P. S. Wang. Mater. Sci. Eng., 11, 51 (1973).

A. Kato, H. Nagasawa, S. Ikeda. J. Solid State Chem., 80, 123 (1989). https://doi.org/10.1016/0022-4596(89)90168-5

R. V. Vovk, Z. F. Nazyrov, M. A. Obolenskii, I. L. Goulatis. Low Temp. Phys., 40, 456 (2014). https://doi.org/10.1063/1.4870852

S. Hayashi, K. Asai, M. Akiyama. J. Appl. Phys., 54, 2240 (1983). https://doi.org/10.1063/1.332571

M. T. Anderson, K. R. Poeppelmeier. Chem. Mater., 6, 2 (1994). https://doi.org/10.1021/cm00038a002

Y. Yamazaki, P. H. Hor, C. W. Chu. Appl. Phys. Lett., 52, 1934 (1988). https://doi.org/10.1063/1.99335

D. M. Ginsberg (ed). Physical Properties of High Temperature Superconductors I. Word Scientific, Singapore (1989), 526 р.

Published
2024-05-30
How to Cite
Pashchenko, L. O., Chykina, O. L., & Vovk, R. V. (2024). STRUCTURAL RELAXATION AND DIFFUSION OF THE LABILE COMPONENT IN NON-STOCHIOMETRICAL CUPRATES ReBa2Cu3O7-Δ (Re = Y, HO) AND ASSOCIATED OXIDES (overview). Journal of V. N. Karazin Kharkiv National University. Series Physics, (40), 7-24. https://doi.org/10.26565/2222-5617-2023-40-01

Most read articles by the same author(s)

1 2 3 > >>