Pressure effect on the electrical resistance of Y0.77Pr0.23Ba2Cu3O7-δ single crystals

  • G. Ya. Khadzhaj Physics Department, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61077, Kharkiv, Ukraine
  • A. V. Matsepulin Physics Department, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61077, Kharkiv, Ukraine
  • A. Chroneos Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom; Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom http://orcid.org/0000-0002-2558-495X
  • I. L. Goulatis Physics Department, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61077, Kharkiv, Ukraine
  • R. V. Vovk Physics Department, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61077, Kharkiv, Ukraine http://orcid.org/0000-0002-9008-6252
Keywords: Y1-xPrxBa2Cu3O7-δ single crystals, doping with praseodymium, hydrostatic pressure, phase separation, baric derivatives

Abstract

The effect of hydrostatic pressure up to 12 kbar on the electrical resistance in the basal ab-plane of optimally oxygen-doped (δ<0.1) single crystals Y1–xPrxBa2Cu3O7–δ moderately doped with praseodymium (x≈0.23) with a critical temperature Tc≈67 K. Compared to undoped single-crystal YBa2Cu3O7–δ, doping with praseodymium led to a decrease in the critical temperature by ≈24 K with a simultaneous increase in ρab (300 K) by ≈130 μΩcm. In the region of the transition to the superconducting state, several clearly pronounced peaks are observed on the dρ/dTT curves, which indicates the presence of several phases with different critical temperatures in the sample. The application of high hydrostatic pressure leads to an increase in Tc by about 3 K. This increase slows down with increasing pressure, and the baric derivatives, dTc/dP, decrease from 0.44 K/kbar at atmospheric pressure to 0.14 K/kbar at 11 kbar. The comparatively weak change in the critical temperature under the action of hydrostatic pressure is due to the relatively small value of the orthorhombic distortion, (ab)/a. The change in the baric derivative dTc/dP upon all-round compression of the sample is due to the fact that, along with an increase in the Debye temperature, the matrix element of the electron-phonon interaction also increases. Possible mechanisms of the effect of high pressure on Tc are discussed taking into account the presence of features in the electronic spectrum of carriers.

Downloads

Download data is not yet available.

References

R.P. Gupta, M. Gupta, Phys. Rev. B, 51, 11760-11766. (1995).

A.L. Solovjov, L.V. Omelchenko, E.V. Petrenko, et. al. Scientific Reports, 9, 20424. (2019). doi.org/10.1038/s41598-019-55959-1.

J.G Bednorz, K.A. Muller Zeitschrift für Physik B, 64, 189-193. 1986.

R.V. Vovk, A.L Solovyov Low Temperature Physics, 44, 81. (2018). doi.org/10.1063/1.5020905.

Chu M.K. Wu, J.R. Ashburn, C.J. Torng, et. al. Phys. Rev. Lett. 58, 908. (1987).

A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, et. al. Physica B, 493, 58-67. (2016).

A.L. Solovjov, E.V. Petrenko, L.V. Omelchenko, et. al. Scientific Reports, 9, 9274. (2019).

D.M. Ginsberg (ed). Physical properties high temperature superconductors I. (Word Scientific, Singapore, 1989).

R.V. Vovk, N.R. Vovk, G.Ya. Khadzhai, et. al. Solid State Communications, 190, 18–22. (2014). dx.doi.org/10.1016/j.ssc.2014.04.004.

A. Chroneos, I.L. Goulatis, R.V. Vovk. Acta Chim. Slov., 54, 179-184. (2007).

G.Ya. Khadzhai, N.R. Vovk, R.V. Vovk. Low Temperature Physics, 40, 488. (2014). doi.org/10.1063/1.4881197

R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, et. al. Journal of Alloys and Compounds. 453, 69-74. (2008).

L. Mendonca Ferreira, P. Pureur, H. A. Borges, P. Lejay. Phys. Rev. B, 69, 212505. (2004).

D.D. Balla, A.V. Bondarenko, R.V. Vovk, et. al. Low Temp. Phys., 23, 777. (1997).

M. Akhavan. Physica B, 321, 265. (2002).

G.Ya. Khadzhai, R.V. Vovk, Z.F. Nazyrov. FNT, 45 (11), 1434-1438. (2019) (Г.Я. Хаджай, Р.В. Вовк, З.Ф. Назыров. ФНТ, 45 (11), 1434–1438. (2019)). [In Russian]

R.V. Vovk, G.Ya. Khadzhai, O.V. Dobrovolskiy. Mod. Phys. Lett. B, 28, 1450142. (2014). doi.org/10.1142/S0217984914501425.

L. Soderholm, K. Zhang, D.G. Hinks, et. al. Nature, 328 (6131), 604. (1987).

A. Kebede, C.S. Jee, J. Schwegler, et. al. Phys. Rev. B, 40, 4453. (1989).

H.A. Borges, M.A. Continentino, Solid State Commun. 80, 197. (1991).

R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, et. al. J Mater Sci: Mater in Electron, 18, 811-815. (2007).

P.G. Lacayc, R. Hermann, G. Kaestener. Physica C, 192, 207-214. (1992).

R.V. Vovk, G.Ya. Khadzhai, Z.F. Nazyrov, et. al. Physica B, 407, 4470. (2012).

S. Sadewasser, J.S. Schilling, A.P. Paulicas, B.M. Veal. Phys. Rev. B, 61 (1), 741-749. (2000).

R.V. Vovk, N.R. Vovk, O.V. Shekhovtsov, et. al. Supercond. Sci. Technol., 26, 085017. (2013).

M.A. Obolenskii, A.V. Bondarenko, R.V. Vovk, A.A. Prodan. Low Temp. Phys., 23, 882. (1997).

W.L. McMillan. Phys. Rev., 167, 331. (1968).

S.R. Evan, V.K. Ratti, B.L. Gyorffy. J. Phys. F, 3 (10), 199-202. (1973).

V.M. Gvozdicov. Physica С, 235-240, 2127 (1994).

A. Perali, G. Varelogiannis. Phys. Rev. B, 61, 3672. (2000).

U. Welp, M. Grimsditch, S. Flesher, et. al. Phys. Rev. Lett., 69, 2130. (1992).

U. Schwingensclögl, C. Schuster. Appl. Phys. Lett., 100, 253111. (2012).

A.J. Matthews, K.V. Kavokin, A. Usher, et. al. Phys. Rev. B, 70, 075317. (2004).

P.G. Curran, V.V. Khotkevych, S.J. Bending, et. al. Phys. Rev. B, 84, 104507. (2011).

I.N. Adamenko, K.E. Nemchenko, V.I. Tsyganok, A.I. Chervanev, Low Temp. Phys., 20, 498. (1994).

N. Kuganathan, P. Iyngaran, R. Vovk, A. Chroneos. Scientific Reports, 9, 4394. (2019). doi.org/10.1038/s41598-019-40878-y.

Published
2020-12-30
How to Cite
Khadzhaj, G. Y., Matsepulin, A. V., Chroneos, A., Goulatis, I. L., & Vovk, R. V. (2020). Pressure effect on the electrical resistance of Y0.77Pr0.23Ba2Cu3O7-δ single crystals. Journal of V. N. Karazin Kharkiv National University. Series Physics, (33), 77-81. https://doi.org/10.26565/2222-5617-2020-33-05