IVAN SLESHYNSKY AS A POPULARIZER OF THE IDEAS OF MATHEMATICAL LOGIC IN UKRAINE
Abstract
The first half of the twentieth century was marked by the simultaneous development of logic and mathematics. Logic offered the necessary means to justify the foundations of mathematics and to solve the crisis that arose in mathematics in the early twentieth century. In European science in the late nineteenth century, the ideas of symbolic logic, based on the works of J. Bull, S. Jevons and continued by C. Pierce in the United States and E. Schroeder in Germany were getting popular. The works by G. Frege and B. Russell should be considered more progressive towards the development of mathematical logic. The perspective of mathematical logic in solving the crisis of mathematics in Ukraine was noticed by Professor of Mathematics of Novorossiysk (Odesa) University Ivan Vladislavovich Sleshynsky. Sleshynsky (1854 –1931) is a Doctor of Mathematical Sciences (1893), Professor (1898) of Novorossiysk (Odesa) University. After studying at the University for two years he was a Fellow at the Department of Mathematics of Novorossiysk University, defended his master’s thesis and was sent to a scientific internship in Berlin (1881–1882), where he listened to the lectures by K. Weierstrass, L. Kronecker, E. Kummer, G. Bruns. Under the direction of K. Weierstrass he prepared a doctoral dissertation for defense. He returned to his native university in 1882, and at the same time he was a teacher of mathematics in the seminary (1882–1886), Odesa high schools (1882–1892), and taught mathematics at the Odesa Higher Women’s Courses. Having considerable achievements in the field of mathematics, in particular, Pringsheim’s Theorem (1889) proved by Sleshinsky on the conditions of convergence of continuous fractions, I. Sleshynsky drew attention to a new direction of logical science. The most significant work for the development of national mathematical logic is the translation by I. Sleshynsky from the French language “Algebra of Logic” by L. Couturat (1909). Among the most famous students of I. Sleshynsky, who studied and worked at Novorossiysk University and influenced the development of mathematical logic, one should mention E. Bunitsky and S. Shatunovsky. The second period of scientific work of I. Sleshynsky is connected with Poland. In 1911 he was invited to teach mathematical disciplines at Jagiellonian University and focused on mathematical logic. I. Sleshynsky’s report “On Traditional Logic”, delivered at the meeting of the Philosophical Society in Krakow. He developed the common belief among mathematicians that logic was not necessary for mathematics. His own experience of teaching one of the most difficult topics in higher mathematics – differential calculus, pushed him to explore logic, since the requirement of perfect mathematical proof required this. In one of his further works of this period, he noted the promising development of mathematical logic and its importance for mathematics. He claimed that for the mathematics of future he needed a new logic, which he saw in the “Principles of Mathematics” by A. Whitehead and B. Russell. Works on mathematical logic by I. Sleszynski prompted many of his students in Poland to undertake in-depth studies in this field, including T. Kotarbiński, S. Jaśkowski, V. Boreyko, and S. Zaremba. Thanks to S. Zaremba, I. Sleshynsky managed to complete the long-planned concept, a two-volume work “Theory of Proof” (1925–1929), the basis of which were lectures of Professor. The crisis period in mathematics of the early twentieth century, marked by the search for greater clarity in the very foundations of mathematical reasoning, led to the transition from the study of mathematical objects to the study of structures. The most successful means of doing this were proposed by mathematical logic. Thanks to Professor I. Sleshynsky, who succeeded in making Novorossiysk (Odesa) University a center of popularization of mathematical logic in the beginning of the twentieth century the ideas of mathematical logic in scientific environment became more popular. However, historical events prevented the ideas of mathematical logic in the domestic scientific space from the further development.
Downloads
References
/References
Boltsano, B. (1911). Paradoxes of the Infinite, Published from the Posthumous Manuscript of the Author by dr. Fr. Przhigonsky. (I. S. Sleshinsky, Trans.). Odessa: Mathesis. (In Russian).
Buchinskiy, P. (1912). A Brief Outline of the Origin and Scientific Activity of the Novorossiysk Society of Naturalists for the First 25 Years of Its Existence (1870–1895). In Notes of the Novorossiysk Society of Naturalists. (In Russian).
Jadacki J. J. (1997–1998). Sleszyński Jan. In Polish Biographical Dictionary. (Vol. XXXVIII). Warsaw; Krakow. Retrieved from http://www.ipsb.nina.gov.pl/a/biografia/jan-sleszynski. (in Polish).
Couturat, L. (1909). Algebra of Logic. (I. Sleshinsky, Trans). Odessa: Mathesis. (In Russian).
Plakhtiy, M. P. (2009). Logic in Ukraine in the Second Half of the XIX – Early XX Century: Directions of Development. Kamianets-Podilskyi: Kamianets-Podilsky I. Ohienko Ukrainian National University. (In Ukrainian).
Rіkun, I. E. (Ed.). (2001). Vidavnitstvo «Mathesis» (1904–1925): Materials for History and a Catalog of Books. Odesa. Retrieved from http://catalog.odnb.odessa.ua/ONNB_ec/NashiVid/sNaykVidan/29545.pdf. (In Ukrainian).
Sleshynsky, I. (1923a). About the First Stages in the Development of Concepts of Infinity. In A Guide for Self-Taught (Vol. 3, pp. 53–88). Warsaw. (In Polish).
Sleshynsky, I. (1925–1929). A Proof Theory: In 2 Vols. (S. K. Zaremba, Ed.). Krakow: Jagiellonian University. (In Polish).
Sleshynsky, I. (1889a). Convergence of Continued Fractions. Odessa: A. Shultse’s Publishing House. (In Russian).
Sleshynsky, I. (1909). In Memory of Platon Sergeevich Poretsky (Obituary). VOFEM, 487, 145–148. (In Russian).
Sleshynsky, I. (1903a). Life and Works of N. Abel. VOFEM – Bulletin of Experimental Physics and Elementary Mathematics, 344, 169–176. (In Russian).
Sleshynsky, I. (1903b). Life and Works of N. Abel. VOFEM – Bulletin of Experimental Physics and Elementary Mathematics, 345, 193–205. (In Russian).
Sleshinskiy, I. (1903c). Life and Works of N. Abel. Speech Delivered by I. Sleshinsky at the Annual Meeting of the Society of Naturalists at Novorossiysk University on March 14, 1903. Odessa: M. Shpentser’s Publishing House. (In Russian).
Sleshynsky, I. (1885). On the Question of the Expansion of Analytic Functions in Continued Fractions. Odessa: Odesskyi Vestnyk. (In Russian).
Sleshynsky, I. (1923b). On the Importance of Logic for Mathematics. In A Guide for Self-Taught (Vol. 3, pp. 39–52). Warsaw. (In Polish).
Sleshynsky, I. (1921). On Traditional Logic: A Lecture Given at the Meeting of the Philosophical Society in Krakow on November 29, 1917. Krakow. (In Polish).
Sleshynsky, I. (1889b). Supplement to the Note on the Convergence of Continued Fractions. Mathematical Collection, 14(3), 436–438. (In Russian).
Sleshynsky, I. (1893a). The Jevons’ Logic Machine. VOFEM – Bulletin of Experimental Physics and Elementary Mathematics, 175, 145–154. (In Russian).
Sleshynsky, I. (1893b). The Jevons’ Logic Machine: Reports from a Meeting of the Mathematical Department of the Novorossiysk Society of Naturalists on Elementary Mathematics and Physics on September 24, 1893. Odessa: E. K. Shpachinskiy. (In Russian).
Sleshynsky, I. (1914). Vaihinger’s Philosophy in Relation to Mathematics. Ruch Filozoficzny, 4(4), 198–199. (In Polish).
Sleshynsky, I. (1897). Weierstrass’ Obituary. VOFEM – Bulletin of Experimental Physics and Elementary Mathematics, 255, 59–62. (In Russian).
Smintina, V. A., Podrezova, M. O., Pruzhina, V. P., & Samodurova, V. V. (Eds.). (2005). Professors of Odessa (Novorossiysk) University. Biographical Dictionary: In 4 Vols. (Vol. 4; 2nd ed.). Odesa: Astroprint. (In Ukrainian).
Stratonov, V. (2019). Along the Waves of Life: In 2 Vols. (Vol. I). Moscow: Novoe Literaturnoe Obozrenie – New Literary Review. (In Russian).
Styazhkin, N. I., & Silakov, V. V. (1962). A Brief Outline of the History of General and Mathematical Logic in Russia. Moscow: Vysshaia Shkola – High School. (In Russian).
Zaremba, S. K. (7–10.09.1927). Comments on Complete Proofs. In Memorial Book of the First Polish Mathematical Congress. Lviv. Retrieved from https://www.ptm.org.pl/zjazd. (In Polish).
Zhyvotivska, D. M. (2015). Educational Activity of Physical and Mathematical Societies of Ukraine in the Second Half of the XIX – Beginning of the XX century. Hileia, 98, 9–13. (In Ukrainian).
Больцано Б. Парадоксы бесконечного, изданные по посмертной рукописи автора др. Фр. Пржигонским / пер. с нем., под ред. и с предисл. проф. И. С. Слешинского. Одесса: Mathesis, 1911. 119 с.
Бучинский П. Н. Краткий очерк возникновения и научной деятельности Новороссийского общества естествоиспытателей за первое 25-летие его существования (1870–1895). Зап. НОЕ. 1912. 37 с.
Видавництво «Mathesis» (1904–1925): Матеріали до історії та каталог книг / автор-упорядник І. Е. Рікун. Одеса, 2001. 60 с. URL: http://catalog.odnb.Odesa.ua/ONNB_ec/NashiVid/sNaykVidan/29545.pdf.
Животівська Д. М. Просвітницька діяльність фізико-математичних товариств України другої половини ХІХ – початку ХХ століття. Гілея: науковий вісник. 2015. Вип. 98. С. 9–13.
Кутюра Л. Алгебра логики / пер. с приб. проф. И. Слешинского. Одесса: Mathesis, 1909. IV, [2], 108, XIV с.
Плахтій М. П. Логіка в Україні у другій половині ХІХ – на початку ХХ століття: напрями розвитку. Кам’янець-Подільський: Кам’янець-Подільський національний університет імені І. Огієнка, 2009. 192 с.
Професори Одеського (Новоросійського) університету: біогр. словник: у 4 т.; т. 4: Р–Я; 2-е вид., доп. / відп. ред. В. А. Сминтина; заступ. відп. ред. М. О. Подрезова; упоряд.: В. П. Пружина, В. В. Самодурова. Одеса: Астропринт, 2005. 629 с.
Слешинский И. В. Дополнение к заметке о сходимости непрерывных дробей. Матем. сб.: журнал. 1889. Т. 14. № 3. С. 436–438.
Слешинский И. В. Жизнь и труды Н. Абеля. ВОФЕМ. 1903. № 344. С. 169–176.
Слешинский И. В. Жизнь и труды Н. Абеля. ВОФЕМ. 1903. № 345. С. 193–205.
Слешинский И. В. Жизнь и труды Н. Абеля: Речь, произнес. И. Слешинским в годичном заседании О-ва естествоиспытателей при Новорос. ун-те 14 марта 1903 г. Одесса: тип. бланко-изд-ва М. Шпенцера, 1903. 21 с.
Слешинский И. В. К вопросу о разложении аналитических функций в непрерывные дроби. Одесса: тип. «Одес. вестн.», 1885. 72 с.
Слешинский И. В. Логическая машина Джевонса. ВОФЕМ. 1893. № 175. С. 145–154.
Слешинский И. В. Логическая машина Джевонса: Сообщ., чит. в заседании Матем. отд-ния Новорос. о-ва естествоиспытателей по вопросам элементарной математики и физики 24 сент. 1893 г. Одесса: Э. К. Ш[пачинский]. 1893. 11 с.
Слешинский И. В. Некролог Вейерштрасса. ВОФЕМ. 1897. № 255. С. 59–62.
Слешинский И. В. О сходимости непрерывных дробей. Одесса: тип. А. Шульце, 1889. 55 с.
Слешинский И. В. Памяти Платона Сергеевича Порецкого (некролог). ВОФЕМ. 1909. № 487. C. 145–148.
Стратонов В. В. По волнам жизни: в 2-х т.; т. 1. М.: Новое литературное обозрение, 2019. 768 с.
Стяжкин Н. И., Силаков В. В. Краткий очерк истории общей и математической логики в России. М: Высшая школа, 1962. 83 с.
Jadacki J. J. Sleszyński Jan: [Zasoby elektroniczne]. Polski słownik biograficzny: t. XXXVIII. Warszawa; Kraków, 1997–1998. URL: http://www.ipsb.nina.gov.pl/a/biografia/jan-sleszynski.
Sleszyński J. Filozofia Vaihingera w stosunku do matematyki. Ruch Filozoficzny. 1914. T. 4. № 4. S. 198–199.
Sleszyński J. O logice tradycyjnej: odczyt wygłoszony na zebraniu Towarzystwa Filozoficznego w Krakowie dnia 29. listopada roku 1917. Kraków, 1921. 11 s.
Sleszyński J. O pierwszych stadjach w rozwoju pojęć nieskończonościowych. Poradnik dla samouków: t. 3. Warszawa, 1923. S. 53–88.
Sleszyński J. O znaczeniu logiki dla matematyki. Poradnik dla samouków: t. 3. Warszawa, 1923. S. 39–52.
Sleszyński J. O Teorja dowodu: t. 1–2 / podług wykładów uniwersyteckich prof. Jana Sleszyńskiego opracował S. K. Zaremba. Nakładem Kółka Matematyczno-Fizycznego Uczniów Uniwersytetu Jagiellońskiego. Kraków, 1925–1929. 197 s.
Zaremba S. K. Uwagi nad dowodami zupełnymi: [Zasoby elektroniczne]. Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego. Lwów, 7–10. IX. 1927. URL: https://www.ptm.org.pl/zjazd.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication of this work under the terms of a license Creative Commons Attribution License 4.0 International (CC BY 4.0).
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.