The Nevanlinna matrix of the truncated Hausdorff matrix moment problem via orthogonal matrix polynomials on [a,b] for the case of an even number of moments

  • Baruch Emmanuel Medina Hernandez Joint Graduate Program in Mathematical Sciences of the National Autonomous University of Mexico and the Michoacan University of Saint Nicholas of Hidalgo, Institute of Physics and Mathematics, Building C-3, 58060, Morelia, Michoacan, Mexico https://orcid.org/0000-0002-5072-706X
Keywords: Truncated Hausdorff matrix moment problem, Nevanlinna matrix, orthogonal matrix polynomials

Abstract

The scalar moment problem was first introduced by T. J. Stieltjes in his work ``Recherches sur les fractions continues'' Annals of the Faculty of Sciences of Toulouse 8, 1--122, (1895). He formulated it as follows: Given the moments of order $k$ ($k=0,1,2,\dots$), find a positive mass distribution on the half-line $[0,+\infty)$. The study of matrix and operator moment problems was initiated by M. G. Krein in his seminal paper ``Fundamental aspects of the representation theory of Hermitian operators with deficiency index $(m,m)$'' Translations of the American Mathematical Society, Series II, 97, 75--143, (1949). This paper is related to the truncated Hausdorff matrix moment (THMM) problem: the truncated moment problem on a compact interval $[a,b]$ in contrast to the Stieltjes moment problem on $[0,+\infty)$ and the Hamburger moment problem on $(-\infty,+\infty)$. Our approach relies on V. P. Potapov’s method, which reformulates interpolation and moment problems as equivalent matrix inequalities and introduces auxiliary matrices that satisfy the $\widetilde{J}_q$--inner function property of the Potapov class, together with a system of column pairs.
The method begins by constructing Hankel matrices from the prescribed moments. If these matrices are positive semidefinite, the THMM problem is solvable. In the strictly positive definite case, known as the non-degenerate case, we transform the associated matrix inequalities to derive the Nevanlinna (or resolvent) matrix of the THMM problem, which characterizes its solutions. This framework has been extensively applied, for instance in A. E. Choque Rivero, Yu. M. Dyukarev, B. Fritzsche, and B. Kirstein, ``A truncated matricial moment problem on a finite interval'', in Interpolation, Schur Functions and Moment Problems, Operator Theory: Advances and Applications, Birkh\"{a}user, Basel, 165, 121--173, (2006). The main contribution of the present work is to represent the Nevanlinna matrix of the THMM problem in terms of orthogonal matrix polynomials (OMP) and their associated polynomials of the second kind at point $b$. Note that the representation at point $a$ was obtained earlier in A. E. Choque Rivero, ``From the Potapov to the Krein–Nudel’man representation of the resolvent matrix of the truncated Hausdorff matrix moment problem'' Bulletin of the Mexican Mathematical Society, 21(2), 233--259 (2015). In addition, we establish new identities involving OMP and reformulate an explicit relationship between the Nevanlinna matrices of the THMM problem at points $a$ and $b$, through OMP.

 

Downloads

Download data is not yet available.

References

N. I. Akhiezer. The classical moment problem and some related questions in analysis. – Hafner Publishing Co. Translated by N. Kemmer, New York– 1965.

A. E. Choque Rivero. Multiplicative structure of the resolvent matrix for the truncated Hausdorff matrix moment problem, Interpolation, Schur Functions and Moment Problems II. Operator Theory: Advances and Applications. Birkhäuser/Spring Basel AG, Basel. – 2012.– Vol. 226.– P. 193–210. DOI: https://doi.org/10.1007/978-3-0348-0428-8_4

A. E. Choque Rivero. The resolvent matrix for the Hausdorff matrix moment problem expressed in terms of orthogonal matrix polynomials, Complex Anal. Oper. Theory. – 2013. – Vol. 7, No 4. – P. 927–944. DOI: https://doi.org/10.1007/s11785-012-0255-5

A. E. Choque Rivero. On Dyukarev’s resolvent matrix for truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials, Linear Algebra Appl. – 2015. – Vol. 474. – P. 44–109. DOI: https://doi.org/10.1016/j.laa.2015.01.027

A. E. Choque Rivero. Decompositions of the Blaschke–Potapov factors of the truncated Hausdorff matrix moment problem: the case of an odd number of moments, Commun. Math. Anal. – 2014. – Vol. 17, No 2. – P. 66–81.

A. E. Choque Rivero. Decompositions of the Blaschke–Potapov factors of the truncated Hausdorff matrix moment problem: the case of an even number of moments, Commun. Math. Anal. – 2014. – Vol. 17, No 2. – P. 82–97.

A. E. Choque Rivero. From the Potapov to the Krein-Nudel’man representation of the resolvent matrix of the truncated Hausdorff matrix moment problem, Bol. Soc. Mat. Mex. – 2015– Vol. 21, No 2.– P. 233–259. DOI: https://doi.org/10.1007/s40590-015-0060-z

A. E. Choque Rivero. Relations between the orthogonal matrix polynomials on [a,b], Dyukarev-Stieltjes parameters, and Schur complements, Spec. Matrices.– 2017– Vol. 5.– P. 303–318. DOI: https://doi.org/10.1515/spma-2017-0023

A. E. Choque Rivero. On the solution set of the admissible bounded control problem via orthogonal polynomials, IEEE Trans. Automat. Control. – 2017. Vol. 62, No 10.– P. 5213-5219. DOI: https://doi.org/10.1109/TAC.2016.2633820

A. E. Choque Rivero, Y. I. Karlovich. The time optimal control as an interpolation problem, Commun. Math. Anal. – 2011– Vol. 3.– P. 66–76.

A. E. Choque Rivero, V. Korobov, G. Sklyar. The admissible control problem from the moment problem point of view, Appl. Math. Lett.– 2010– Vol. 23, No 1.– P. 58–63.

A. E. Choque Rivero, Yu. M. Dyukarev, B. Fritzsche, B. Kirstein. A truncated matricial moment problem on a finite interval, In Interpolation, Schur Functions and Moment Problems, Oper. Theory Adv. Appl. Birkhäuser, Basel. – 2006– Vol. 165.– P. 121–173. DOI: https://doi.org/10.1007/3-7643-7547-7_4

A. E. Choque Rivero, Yu. M. Dyukarev, B. Fritzsche, and B. Kirstein. A truncated matricial moment problem on a finite interval. The case of an odd number of prescribed moments, In System Theory, the Schur Algorithm and Multidimensional Analysis, volume 176 of Oper. Theory Adv. Appl. Birkhäuser, Basel. – 2007. – Vol. 176. – P. 99–164. DOI: https://doi.org/10.1007/978-3-7643-8137-0_2

A. E. Choque Rivero, C. Mädler. On Hankel positive definite perturbations of Hankel positive definite sequences and interrelations to orthogonal matrix polynomials, Complex Anal. Oper. Theory– 2014– Vol. 8, No 8.– P. 121–173. DOI: https://doi.org/10.1007/s11785-013-0349-8

A. E. Choque-Rivero, B. E. Medina-Hernandez. On the Resolvent Matrix of the Truncated Hausdorff Matrix Moment Problem, Complex Anal. Oper. Theory – 2024. – Vol. 18, No 55. – P. 1–27. DOI: https://doi.org/10.1007/s11785-024-01499-0

A. E. Choque-Rivero, B. E. Medina-Hernandez. On two resolvent matrices of the truncated Hausdorff matrix moment problem, Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics.– 2022. – Vol. 95. – P. 4–22. DOI: https://doi.org/10.26565/2221-5646-2022-95-01

A. E. Choque Rivero, M. Winklmeier. Explicit relation between two resolvent matrices of the truncated Hausdorff matrix moment problem, Complex Anal. Oper. Theory. – 2023. – Vol. 17, No 50. – P. 1–34. DOI: https://doi.org/10.1007/s11785-023-01351-x

Yu. M. Dyukarev, A. E. Choque Rivero. Power moment problem on compact intervals, Mat. Sb. – 2001. – Vol. 69, No 1-2.– P. 175–187. DOI: https://doi.org/10.1023/A:1002868117970

Yu. M. Dyukarev. Indeterminacy criteria for the Stieltjes matrix moment problem, Math. Notes. – 2004– Vol. 75, No 1.– P. 66–82. DOI: https://doi.org/10.1023/B:MATN.0000015022.02925.bd

Yu. M. Dyukarev. Indeterminacy of interpolation problems in the Stieltjes class, Sb. Math. – 2005. – Vol. 196, No 3. – P. 367–393. DOI: https://doi.org/10.1070/SM2005v196n03ABEH000884

Yu. M. Dyukarev. A generalized Stieltjes criterion for the complete indeterminacy of interpolation problems, Mat. Zametki.– 2008. – Vol. 84, No 1. – P. 22-37. DOI: https://doi.org/10.1134/S000143460807002X

B. Fritzsche, B. Kirstein, C. Mädler. On the Structure of Hausdorff Moment Sequences of Complex Matrices, In: Colombo, F., Sabadini, I., Struppa, D., Vajiac, M. (eds) Advances in Complex Analysis and Operator Theory. Trends in Mathematics. Birkhäuser, Cham. – 2017.

B. Fritzsche, B. Kirstein, C. Mädler. Matricial canonical moments and parametrization of matricial Hausdorff moment sequences, Complex. Anal. Oper. Theory– 2019– Vol. 13, No 5.– P. 2123–2169.

B. Fritzsche, B. Kirstein, C. Mädler. A Schur–Nevanlinna type algorithm for the truncated matricial Hausdorff moment problem, Complex. Anal. Oper. Theory. – 2021. – Vol. 15, No 2. – P. 129.

B. Fritzsche, B. Kirstein, C. Mädler. The Matricial Szegö Mapping from the Perspective of Schur Analysis, Complex. Anal. Oper. Theory– 2025– Vol. 19, No 21.– P. 1–77. DOI: https://doi.org/10.1007/s11785-024-01629-8

I. V. Kovalishina. Analytic theory of a class of interpolation problems, Izv. Akad. Nauk SSSR Ser. Mat. – 1983. – Vol. 47, No 3. – P. 455–497. DOI: https://doi.org/10.1070/IM1984v022n03ABEH001452

M. G. Krein. Fundamental aspects of the representation theory of Hermitian operators with deficiency index (mm), Transl. Ser. II Am. Math. Soc.– 1949. – Vol. 97. – P. 75–143. DOI: https://doi.org/10.1090/trans2/097/06

H. Thiele. Beiträge zu matriziellen Potenzmomentenproblemen, Ph.D. Thesis, Leipzig University. – 2006.

T. J. Stieltjes. Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse– 1894– Vol. 8.– P. 1-122.

Published
2025-12-11
Cited
How to Cite
Medina Hernandez, B. E. (2025). The Nevanlinna matrix of the truncated Hausdorff matrix moment problem via orthogonal matrix polynomials on [a,b] for the case of an even number of moments. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 102, 5-29. https://doi.org/10.26565/2221-5646-2025-102-01
Section
Статті