Новий довгохвильовий флоуресцентний зонд для биомедичних досліджень
Анотація
Сквараїни представляють собою клас органічних барвників, функціонально активних у червоній та ближній інфрачервоній областях. Завдяки їх унікальним оптичним характеристикам, зокрема, високому коефіцієнту екстинкції, низькому фоновому сигналу, високій фотостабільності, ці флуорофори привертають увагу як перспективні агенти для візуалізації біомолекул. У даній роботі охарактеризовані спектральні властивості та деякі аспекти біологічного використання нового сквараїнового зонду SQ-1. Виявлено, що даний зонд має високу ліпід-асоціюючу здатність, що виражається у значному зростанні інтенсивності флуоресценції. Показано, що асоціація SQ-1 із ліпідними бішарами, шо містять цвіттеріонні та аніонні ліпіди, контролюється гідрофобними взаємодіями. Аналіз спектральної поведінки SQ-1 у модельних мембранних системах, що містили гемові білки, показав, що зонд чутливий до реактивних форм кисню. В основі цього ефекту лежить, здогадно, взаємодія радикалів ліпідів із зондом, шо супроводжується дестабілізацією сквараїнового мостика. Дослідження індуктивно-резонансного переносу енергії виявило можливість використання SQ-1 для структурної характеризації амілоїдних фібрил.
Завантаження
Посилання
Lakowicz J.R. Principles of fluorescent spectroscopy, 3rd edition. – New York: Springer, 2006.
Natarajan A.T. Fluorescence in situ hybridization (FISH) in genetic toxicology // J. Environ. Pathol. Toxicol. Oncol. – 2001. – Vol. 20. – P. 293-298.
Pruitt S.C., Melnicki L.M., Stewart C.C. Analysis of fluorescent protein expressing cells by flow cytometry // Methods Mol. Biol. – 2004. – Vol. 263. – P. 239-258.
Leblond F., Davis S., Valdes P., Pogue B. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications // J. Photochem. Photobiol. B. – 2010. – Vol. 98. – P. 77-94.
Terai T., Nagano T., Small-molecule fluorophores and fluorescent probes for bioimaging // Pflugers Arch. – 2013. – Vol. 465. – P. 347-359.
Willets K., Ostroverkhova O., He M., Twieg R., Merner W. Novel fluorophores for single-molecule imaging // J. Am. Chem. Soc. – 2013. – Vol. 125. – P. 1174-1175.
Pansare V., Hejazi S., Faenza W., Prud’homme R. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores and multifunctional nano carriers // Chem. Mater. – 2012. – Vol. 24. – P. 812-827.
Kim E., Lee Y., Lee S., Park S. Discovery, understanding and bioapplication of organic fluorophore: a case study with an indolizine-based novel fluorophore // Acc. Chem. Res. – 2015. – Vol. 48. – P. 538-547.
Ramaiah D., Eckert I., Arun K., Weidenfeller, Epe B. Squaraine dyes for photodynamic therapy: mechanism of cytotoxicity and DNA damage induced by halogenated squaraine dyes plus light (>600 nm) // Photochem. Photobiol. – 2004. – Vol. 79. – P. 99- 104.
Qin C., Wong W., Han L. Squaraine for dye-sensitized solar cells: recent advances and future challenges // Chem. Asian J. – 2013. – Vol. 8. – P. 1706-1719.
Sleiman M., Ladame S. Synthesis of squaraine dyes under mild conditions: applications for labelling and sensing of biomolecules // Chem. Commun. – 2014. – Vol. 50. – P. 5288-5290.
Hu L., Yan Z., Hu H. Advances in synthesis and application of near-infrared absorbing squaraine dyes // RSC Advances. – 2013. – Vol. 3. – P. 7667-7676.
Law K., Bailey F. Squaraine chemistry: effect of synthesis on the morphological and xerographic properties of photoconductive squaraines // J. Imag. Sci. – 1987. – Vol. 31. – P. 172-175.
Merritt V., Hovel H. Organic solar cells of hydroxysquarylium // Appl. Phys. Lett. – 1976. – Vol. 29. – P. 414-416.
Shafeekh K., Rahim M., Basheer M., Suresh C., Das S. Highly selective and sensitive colourimetric detection of Hg2+ ions by unsymmetrical squaraine dyes // Dyes and Pigments. – 2013. – Vol. 96. – P. 714-721.
Wang W., Fu A., You J., Gao G., Lan J., Chen L. Squaraine-based colorimetric and fluorescent sensors for Cu2+-specific detection and fluorescence imaging in living cells // Tetrahedron. – 2010. – Vol. 66. – P. 3695-3701.
Ramaiah D., Eckert I., Arun K., Weidenfeller L., Epe B. Squaraine dyes for photodynamic therapy: study of their cytotoxicity and genotoxicity in bacteria and mammalian cells // Photochem. Photobiol. – 2002. – Vol. 76. – P. 672-677.
Xu Y., Li Z., Malkovskiy A., Sun S., Pang Y. Aggregation control of squaraines and their use as near-infrared fluorescent sensors for protein // J. Phys. Chem. B. – 2010. – Vol. 114. – P. 8574-8580.
Ioffe V., Gorbenko G., Domanov Ye., Tatarets A., Patsenker L., Terpetschnig E., Dyubko T. A new fluorescent squaraine probe for the measurement of membrane polarity // J. Fluoresc. – 2006. – Vol. 16. – P. 47-52.
Ioffe V., Gorbenko G., Tatarets A., Patsenker L., Terpetschnig E. Examining protein-lipid interactions in model systems with a new squarylium fluorescent dye // J. Fluoresc. – 2006. – Vol. 16. – P. 547-554.
Ahn H., Yao S., Wang X., Belfiled K. Near-infrared-emitting squaraine dyes with high 2PA cross-sections for multiphoton fluorescence imaging // ACS Appl. Mater. Interfaces. – 2012. – Vol. 4. – P. 2847-2854.
Ioffe V., Gorbenko G., Deligeorgiev T., Gadjev N., Vasilev A. Fluorescence study of protein-lipid complexes with a new symmetric squarylium probe // Biohys. Chem. – 2007. – Vol. 128. – P. 75-86.
Trusova V., Gorbenko G., Deligeorgiev T., Gadjev N., Vasilev A. A novel squarylium dye for monitoring oxidative processes in lipid membranes // J. Fluoresc. – 2009. – Vol. 19. – P. 1017-1023.
Gorbenko G., Trusova V., Kirilova E., Kirilov G., Kalnina I., Vasilev A., Kaloyanova S., Deligeorgiev T. New fluorescent probes for detection and characterization of amyloid // Chem. Phys. Lett. – 2010. – Vol. 495. – P. 275-279.
Mui B., Chow L., Hope M. Extrusion technique to generate liposomes of defined size // Meth. Enzymol. – 2003. – Vol. 367. – P. 3-14.
Bartlett G. Phosphorus assay in column chromatography // J. Biol. Chem. – 1959. – Vol. 234. – P. 466-468.
Holley M., Eginton C., Schaefer D., Brown L. Characterization of amyloidogenesis of hen egg lysozyme in concentrated ethanol solution // Biochem. Biophys. Res. Commun. – 2008. – Vol. 373. – P. 164-168.
Oswald B., Lehmann F., Simon L., Terpetschnig E., Wolbeis O. Red laser-induced fluorescence energy transfer in an immunosystem // Anal. Biochem. – 2000. – Vol. 280. – P. 272–277.
Collot M., Kreder R., Tatarets A., Patsenker L., Mely Y., Klymchenko A. Bright fluorogenic squaraines with tuned cell entry for selective imaging of plasma membrane vs. endoplasmic reticulum // Chem. Commun. – 2015. – Vol. 51. – P. 17136-17139.
Gaisenok V., Sarzhevsky A. Anisotropy of absorption and luminescence of polyatomic molecules, 1986.
Zhang D., Zhao Y., Qiao Y., Mayerhoffer U., Spenst P., Li X., Wurthner F. Nano-confined squaraine dye assemblies: new photoacoustic and near-infrared fluorescence dual-modular imaging probes in vivo // Bioconjug. Chem. – 2014. – Vol. 25. – P. 2021-2029.
Hempel S., Buettner G., O’Malley Y., Wessels D., Flaherty D. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′- dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123 // Free Radical Biol. Med. - 1999. – Vol. 27. – P. 146-159.
Akasaka K. Development of phosphine reagents for fluorometric determination of lipid hydroperoxides // Tohoku J. Agricul. Res. – 1995. – Vol. 45. – P. 111-119.
Wolfbeis O., Durkop A., Wu M., Lin Z. A europium-ion-based luminescent sensing probe for hydrogen peroxide // Angew. Chem. – 2002. – Vol. 41. – P. 4495-4498.
Rogers M., Patel R., Reeder B., Sarti P., Wilson M., Alavash A. Pro-oxidant effects of cross-linked haemoglobins explored using liposome and cytochrome c oxidase vesicle model membranes // Biochem. J. – 1995. – V. 310. – P. 827-833.
Sadrzadeh S., Graf E., Panter S., Hallaway P., Eaton J. Hemoglobin. A biologic Fenton reagent // J. Biol. Chem. – 1984. – Vol. 259. – P. 14354-14356.
Tarazi L., Narayanan N., Sowell J., Patonay G., Strekowski L. Investigation of the spectral properties of a squarylium nearinfrared dye and its complexation with Fe(III) and Co(II) ions // Spectrochim. Acta A. – 2002. – Vol. 58. – P. 257-264.
Iuliano L., Piccheri C., Coppola I., Pratico D., Micheletta F., Violi F. Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: a versatile probe to measure the chain breaking antioxidant activity of biomolecules // Biochim. Biophys. Acta. – 2000. – Vol. 1474. – P. 177-182.
Ohyashiki T., Nunomura M., Katoh T. Detection of superoxide anion radical in phospholipid liposomal membrane by fluorescence quenching method using 1,3-diphenylisobenzofuran // Biochim. Biophys. Acta. – 1999. – Vol. 142. – P. 131-139.
Choudhury F., Sabat G., Sussman M., Nishi Y., Shohet J. Fluorohore-based sensor for oxygen radicals in processing plasmas // J. Vacuum Sci. Technol. A. – 2015. – Vol. 33. – P. 061305.
Wong-ekkabut J., Xu Z., Triampo W., Tang I., Tieleman D., Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study // Biophys. J. – 2007. – Vol. 93. – P. 4225-4236.
Wratten M., Vanginkel G., Vantveld A., Bekker A., Vanfaasen E., Sevanian A. Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes // Biochemistry. – 1992. – Vol. 31. – P. 10901-10907.
Mason R., Walter M., Mason P. Effect of oxidative stress on membrane structure: small-angle X-ray diffraction analysis // Free Radic. Biol. Med. – 1997. – Vol. 23. – P. 419-425.
Xu Y., Malkovskiy A., Pang Y. Graphene binding-promoted fluorescence enhancement for bovin serum albumin recognition // Chem. Commun. – 2011. – Vol. 47. – P. 6662-6664.
Jisha V., Arun K., Hariharan M., Ramaiah D. Site-selective binding and dual mode recognition of serum albumin by a squaraine dye // J. Am. Chem. Soc. – 2006. – Vol. 128. – P. 6024-6025.
Jisha V., Arun K., Hariharan M., Ramaiah D. Site-selective interactions: squaraine dye – serum
albumin complexes with enhanced fluorescence and triplet yields // J. Phys. Chem. B. – 2010. – Vol. 114. – P. 5912-5919.
Volkova K., Kovalska V., Tatarets A., Patsenker L., Kryvorotenko D., Yarmoluk S. Spectroscopic study of squaraines as protein-sensitive fluorescent dyes // Dyes and Pigments. – 2007. – Vol. 72. – P. 285-292.
Harrison R., Sharpe P., Singh Y., Fairlie D. Amyloid peptides and protein in review // Rev. Physiol. Biochem. Pharmacol. – 2007. – Vol. 159. – P. 1-77.
Chiti F., Dobson C. Protein misfolding, functional amyloid, and human disease // Ann. Rev. Biochem. – 2006. – Vol. 75. – P. 333-366.
Krebs M., Bromley E., Donald A. The binding of thioflavin T to amyloid fibrils: localization and implications // J. Struct. Biol. – 2005. – Vol. 149. – P. 30-37.
Groenning M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils – current status // J. Struct. Biol. – 2010. – Vol. 3. – P. 1-18.
Tycko R. Solid state NMR studies of amyloid fibril structure // Annu. Rev. Phys. Chem. – 2011. – Vol. 62. – P. 279-299.
Drake J., Klafter J., Levitz P. Chemical and biological microstructures as probed by dynamic // Science. – 1991. – Vol. 251. – P. 1574-1579.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).