ANALYTICAL SOLUTION AND NEUTRAL CURVES OF THE STATIONARY LINEAR RAYLEIGH PROBLEM WITH RIGID OR MIXED BOUNDARY CONDITIONS IN CYLINDRICAL GEOMETRY

  • O. L. Andreeva «Kharkov Institute of Physics and Technology» of NAS of Ukraine Akademicheskaya str. 1, 61108, Kharkov, Ukraine «A.N. Podgorny Institute for Mechanical Engineering Problems» of NAS of Ukraine Pozharsky str. 2/10, 61046, Kharkov, Ukraine
  • Viktor I. Tkachenko «Kharkov Institute of Physics and Technology» of NAS of Ukraine Akademicheskaya str. 1, 61108, Kharkov, UkraineV.N. Karazin Kharkiv National University Svobody sq. 4, 61022, Kharkov, Ukraine https://orcid.org/0000-0002-1108-5842

Анотація

On the basis of the Navier-Stokes equations in the Boussinesq approximation in the linear approximation the classical problem of Rayleigh, dedicated to the study of stable stationary solutions to the horizontal plane layer of a viscous, incompressible fluid heated from below in the case of execution on the upper and lower boundaries of the layer of solid boundary conditions is considered. The analytical solutions describing the perturbed velocity and temperature of the fluid in a cylindrical convection cell with solid boundary conditions are obtained. The obtained analytical solution to build similar solutions of the problem with mixed boundary conditions is used. The analytical expressions for the neutral curves in the case of solid and mixed boundary conditions based on the obtained solutions  are built. A comparison of the analytically constructed neutral curves with numerical simulations obtained by other authors is carried out. The derived analytical expressions for the neutral curves of solid and mixed boundary conditions with sufficient accuracy correspond to the numerical calculations is shown.

Завантаження

##plugins.generic.usageStats.noStats##

Біографія автора

Viktor I. Tkachenko, «Kharkov Institute of Physics and Technology» of NAS of Ukraine Akademicheskaya str. 1, 61108, Kharkov, UkraineV.N. Karazin Kharkiv National University Svobody sq. 4, 61022, Kharkov, Ukraine

Посилання

Chandrasekhar S. Hydrodynamic and hydromagnetic stability, 1970. – 657 p.

Neklyudov I.M., Borts B.V. Tkachenko V.I. Opisanie Lengmurovskih cirkulyaciy uporyadochennim naborom konvektivnih kubicheskih yacheek // Prikladnaya gidromekhanika. – 2012. – Т. 14(86). – No.2. – S.29–40.

Shchuka А.А. Nanoelektronika. – M.: Binom. Laboratoriya znaniy, 2012. – 342 s.

Sazhin B.S., Reutskiy V.А. Sushka i promivka tekstilnih materialov: teoriya i raschet processov. – М.: Legpromizdat, 1990. – 224 s.

Muller G. Virashchivanie kristalov iz rasplava. – M.: Mir, 1991. – 143 s.

Rykalin N.N., Uglov А.А, Кокоrа А.N. Lazernaya obrabotka materialov. – М.: Мashinostroejnije, 1975. – 296 s.

Gershuny G.Z., Zhuhovickiy E.M. Convective stability of incompressible fluid. – Мoscow: Nauka, 1972. – 393 p.

Strutt J. W. (Lord Rау1еigh) // Phil. Mag. – 1916. – Vol. 32. – P. 529 – 546.

Bozbiei L., Borts B., Kazarinov Y., Kostikov A., Tkachenko V. Experimental Study of Liquid Movement in Free Elementary Convective Sells // Energetika. – 2015. – T.61. – No.2. – P. 45 – 56.

Patochkina О.L., Borts B.V., Tkachenko V.I. Elementary Convection Cell in the Horizontal Layer of Viscous Incompressible Liquid with Rigid and Mixed Boundary Conditions // East Eur. J. Phys. – 2015. – Vol. 2. – No. 1. – P. 23 – 31.

Bozbey L.S., Borts B.V., Kostikov A.O., Tkachenko V.I. Formation of Elementary Convective Cell in Horizontal Layer of Viscous Incompressible Fluid // East Eur. J. Phys. – 2014. – Vol. 1. – No.4. – P. 49 – 56.

Опубліковано
2016-03-02
Цитовано
Як цитувати
Andreeva, O. L., & Tkachenko, V. I. (2016). ANALYTICAL SOLUTION AND NEUTRAL CURVES OF THE STATIONARY LINEAR RAYLEIGH PROBLEM WITH RIGID OR MIXED BOUNDARY CONDITIONS IN CYLINDRICAL GEOMETRY. Східно-європейський фізичний журнал, 2(4), 52-57. https://doi.org/10.26565/2312-4334-2015-4-04