PHYSICAL ASPECTS OF VACUUM-ARC COATING DEPOSITION

  • I. I. Aksenov National Science Center "Kharkiv Institute of Physics and Technology"
  • D. S. Aksyonov National Science Center "Kharkiv Institute of Physics and Technology"

Анотація

The brief analytical review of literary data concerning the processes which are a physical basis of vacuum-arc coating deposition technology is presented. The phenomena responsible for formation of films by condensation of substance from plasma of arc discharge in vacuum or in a gaseous ambience of low pressure are described.. Interaction of metal plasma with a gas target, a substrate and other surfaces of working chamber, the processes of nucleation and condensate growth, influence of energetic parameters of a deposition process (kinetic and potential energy of metal ions, activation degree and sort of the gas ) on properties of condensates and near-surface layers of the substrate are described.

Завантаження

##plugins.generic.usageStats.noStats##

Біографія автора

I. I. Aksenov, National Science Center "Kharkiv Institute of Physics and Technology"

Посилання

.Colligon J.S. Energetic condensation: processes, properties, and products // J. Vac.Sci. Technol. - 1995. – Vol.A 13. – P.1649 – 1657.

Anders André. Cathodic Arcs – From Fractal Spots to Energetic Condensation. – Springer, 2008. – 540 p.

Greene J.E., Nucleation, film growth, and microstructural evolution // in Handbook of Deposition Technologies for Films and Coatings, Bunshah, R.F., (Ed.), 2 nd ed. – NJ: Noyes, Westwood, 1994. – P. 681–739.

Hubler G.K., Sprague J.A. Energetic particles in PVD technology: particle surface interaction processes and energy-particle relationships in thin film deposition // Surf. Coat. Technol.– 1996. – Vol. 81.– P. 29–35.

Xu S., Evans B.L. Nucleation and growth of ion beam sputtered metal films // J. Mat. Sci.– 1992.– Vol. 27.– P. 3108–3117.

Gill S.P.A. Self-organised growth on strained substrates: the influence of anisotropic strain, surface energy and surface

diffusivity // Thin Solid Films.– 2003.– Vol. 423.– P. 136–145.

Petrov I., Barna P.B., Hultman L., Greene J.E. Microstructural evolution during film growth, // J. Vac. Sci. Technol. – 2003.– Vol. A 21. – P. S117–S128.

Uhlmann S., Fraunheim T., Lifshitz Y. Molecular-dynamics study of the fundamental processes involved in subplantation of diamondlike carbon // Phys. Rev. Lett.– 1998. – Vol. 81. – P. 641–644.

Lifshitz Y., Kasai S.R., Rabalais J.W., Eckstein W. Subplantation model for film growth from hyperthermal species // Phys. Rev.– 1990.– Vol. B 41 – P. 10468–10480.

Ronning C. Ion-beam synthesis and growth mechanism of diamond-like materials // Appl. 2003 Phys. – Vol. A 77. – P 39–50.

Carlson T.A., Nestor C.W., Wasserman N., McDowell J.D. Calculated ionization potentials for multiply charges ions // Atomic Data. –1970. – No. 2. – P. 63–99.

Lide D.R., (ed.) Handbook of Chemistry and Physics, 81st Edition. – New York: CRC Press, Boca Raton, 2000.

Burgdörfer J. and Meyer F. Image acceleration of multiply charged ions by metallic surfaces // Phys. Rev. –1993. –Vol. A 47. – P.R20–R22.

Haägg L., Reinhold C.O., Burgdörfer J. Energy gain of highly charged ions in front of LiF // J. Nucl. Instrum. Meth. Phys. Res.

–1997. – Vol. B 125. – P. 133–137.

Winter, H., Aumayr F. Interaction of slow HCI with solid surfaces // Physica Scripta. –2001. – Vol. 92. – P. 15–21.

Schenkel T., Barnes A.V., Niedermayr T.R., et al. Deposition of potential energy by slow, highly charged ions // Phys. Rev. Lett. –1999. – Vol. 83. – P. 4273–4276.

Al-Nimr M.A., Arpaci V.S. Picosecond thermal pulses in thin metal films // Appl. Phys. –1999. – Vol. 85 – P. 2517–2521.

Musil J. Hard and superhard nanocomposite coatings // Surf. Coat. Technol. –2000. – Vol.125. – P. 322–330.

Anders A., Yushkov G. Measurements of secondary electrons emitted from conductive substrates under high-current metal ion bombardment // Surf. Coat. Technol. –2001. – Vol. 136 – P. 111–116.

Kress J.D., Hanson D.E., Voter A.F., Liu C.L., Liu X.Y., Coronell D.G. Molecular dynamics simulation of Cu and Ar ion

sputtering of Cu (111) surfaces // J. Vac. Sci. Technol. –1999. – Vol. A 17. – P. 2819–2825.

Hanson D.E., Stephens B.C., Saravanan C., Kress J.D. Molecular dynamics simulations of ion self-sputtering of Ni and Al surfaces // J. Vac. Sci. Technol.– 2001.– Vol. A 19. – P. 820–825.

Movchan B.A.,Demchishin A.V. Investigation of the structure and properties of thick vacuum-deposited films of nickel, titanium, tungsten, alumina and zirconium dioxide // FMM – 1969.– Vol.26, No. 4. – P. 653–660.

Thornton, J.A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings // J. Vac. Sci. Technol. – 1974.– Vol. 11.– P. 666–670.

Oettel H., Wiedemann R., Preiler S. Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation // Surf. Coat. Technol. – 1995. – Vol.74–75. P. 273–278.

Vlasveld A.C., Harris S.G., Doyle E.D., Lewis D.B., Munz W.D. Characterization and performance of partially filtered arc

TiAlN coatings // Surf. Coat. Technol. – 2002. – Vol. 149. – P. 217–223.

Brown I. G., Anders A., Anders S., et al. Plasma synthesis of metallic and composite thin films with atomically mixed substrate bonding // Nucl. Instrum. Meth. Phys. Res. B. – 1993. – Vol. 80/81. P. 1281–1287.

Anders A., Anders S., Brown I. G., Dickinson M. R., MacGill R. A. Metal plasma immersion ion implantation and deposition

using vacuum arc plasma sources // J. Vac. Sci. Technol. B. – 1994. – Vol. 12. –P. 815–820.

Strel’nitskij V.E., Aksenov I.I. DLC films. – Kharkov: “Kontrast” – 2006, 344 p.

Anders S., Callahan D. L., Pharr G. M., Tsui T. Y., Bhatia C. S. Multilayers of amorphous carbon prepared by cathodic arc deposition // Surf. Coat. Technol.– 1997.– Vol. 94/95.– P. 189–194.

Lim S. H. N.,. McCulloch D. G, Bilek M. M. M., McKenzie D. R. Minimization of intrinsic stress in titanium nitride using a

cathodic arc with plasma immersion ion implantation // J. Appl. Phys. – Vol. 93. – P. 4283–4288.

Hörling A., Hultman L., Odén M., Sjölén J., Karlsson L. Mechanical properties and machining performance of Ti Al N-coated cutting tools // Surf. Coat. Technol. – 2005. – Vol. 191. – P. 384–392.

Hörling A., Hultman L., Odén M., Sjolén J., Karlsson L. Thermal stability of arc evaporated high aluminum-content Ti Al N thinfilms // J. Vac. Sci. Technol. A. – 2002 – Vol. 20. – P. 1815–1823.

Pelletier J., Anders A. Plasma-Based Ion Implantation and Deposition. A Review of Physics, Technology, and Applications // IEEE transactions on plasma science. – 2005. – VOL. 33, No. 6. – P. 1945–1959.

Bilek M. M. M., Tarrant R. N., McKenzie D. R., Lim S. H. N., McCulloch D. G. Control of stress and microstructure in cathodic arc deposited films // IEEE Trans. Plasma Sci. – 2003.– Vol. 31, No. 5.– P. 939–944.

Bilek M. M. M.,. McKenzie D. R, Moeller W. Use of low energy and high frequency PBII during thin film deposition to

achieve relief of intrinsic stress and microstructural changes // Surf. Coat. Technol. –2004. – Vol. 186. – P. 21–28.

Anders A. Yushkov G. Y. Ion flux from vacuum arc cathode spots in the absence and presence of magnetic fields // J. Appl. Phys. – 2002. – Vol. 91, – P. 4824–4832.

McKenzie D. R Bilek M. M. M. Thermodynamic theory for preferred orientation in materials prepared by energetic condensation // Thin Solid Films. – 2001. – Vol. 382. – P. 280–287. 39 Physical aspects of vacuum-arc coating deposition EEJP Vol.1 No.3 2014

Coeur F. Le, Lagarde T., Pelletier J., Arnal Y., Burke R. Distributed electron cyclotron resonance plasma immersion for large area ion implantation // Rev. Sci. Instrum.. – 1998. – Vol. 69. – P. 831–836.

Goebel D. M, Adler R. J., Beals D. F., Reass W. A., Pulser technology // in Handbook of Plasma Immersion Ion Implantation and Deposition, Anders A., (ed). – New York: Wiley. – 2000. – P. 467–513.

Collins G., Hutchings R., Short K. T., Tendys J., van der Valk C. H. Development of a plasma immersion ion implanter for the surface treatment // Surf. Coat. Technol., vol. 84, pp. 537–543.

Aksenov I.I. Andreev, Bren’ V.G. et al. Pokrytiya, poluchennye kondensatsiei plazmennyrh potokov v vakuume (sposob kondensatsii s ionnoi bombardirovkoi) // UFZh. – 1979. – T. 24, No. 4. – P. 515–525.

Hanson D.E., Stephens B.C., Saravanan C., Kress J.D. Molecular dynamics simulations of ion self-sputtering of Ni and Al surfaces // J. Vac. Sci. Technol. – 2001. – Vol. A 19. – P. 820–825.

Aksenov I.I., Belous V.A., Padalka V.G., Khoroshikh V.M. Poluchenie pokrytii na osnove okisi alyuminiya iz separirovannogo potoka plazmy vakuumnoi dugi // Fizika i khimiya obrabotki materialov. – 1977. – No. 6. – P. 89–92.

Anders A., (ed.) Handbook of Plasma Immersion Ion Implantation and Deposition. – New York: John Wiley & Sons. – 2000.

Conrad J.R., Radtke J.L., Dodd R.A., Worzala F.J., Tran N.C. Plasma source ion-implantation technique for surface

modification // J. Appl. Phys. – 1987. – Vol. 62. – P.4591–4596.

Brown I.G., Godechot X., Yu K.M. Novel metal ion surface modification technique // Appl. Phys. Lett. – 1991. – Vol. 58. –

P. 1392–1394.

Anders A. From plasma immersion ion implantation to deposition: a historical perspective on principles and trends // Surf. Coat. Technol. – 2002. – Vol.156. – P.3–12.

Mattox D.M. Film deposition using accelerated ions // Electrochem. Technol. – 1964. – Vol.2. – P.295–298.

Anders A., Anders S., Brown I.G., Dickinson M.R., MacGill R.A. Metal plasma immersion ion implantation and deposition

using vacuum arc plasma sources // J. Vac. Sci. Technol. – 1994. – Vol. B 12. – P. 815–820.

Bilek M.M.M., McKenzie D.R., Moeller W. Use of low energy and high frequency PBII during thin film deposition to achieve

relief of intrinsic stress and microstructural changes // Surf. Coat. Technol. – 2004. – Vol. 186. – P. 21–28.

Bilek M.M.M., Tarrant R.N., McKenzie D.R., Lim S.H.N., McCulloch D.G. Control of stress and microstructure in cathodic arc deposited films // IEEE Trans. Plasma Sci. – 2003. – Vol. 31. – P. 939–944.

Mesyats G. A. Cathode phenomena in a vacuum discharge. – M.: Nauka, 2000.

Kühn M., Richter F. Characteristics in reactive arc evaporation // Surf. Coat. Technol. – 1997. – Vol 89. – P. 16–23.

Aksenov I.I., Antuf’yev Yu.P., Bren’ V.G., Khoroshikh V.G. Vliyanie davleniya gaza v reaktsionnom obyeme na protsess

sinteza nitridov pri kondensatsii plazmy metallov // Khimiya vysokikh energyi. – 1986. – Vol. 20.– No.1. – P. – 82–86.

Aksenov I.I., Khoroshikh V.M., Lomino N.S., Ovcharenko V.D., Zadneprovskij Yu.A. Transformation of axial vacuum-arc

plasma flows into radial streams and their use in coating deposition // IEEE Trans. Plasma Sci. – 1999. – Vol. 27. - No.4. – P.1026–1029.

Aksenov I.I., Khoroshikh V.M. A low-pressure steady-state arc with a positive anode potential drop and its use in coating

processes // Proc 18 ISDEIV, The Netherland, Eindhoven. – 1998. – Vol. 2. – P. 577–580.

Khoroshikh V.M., Leonov S.A., Belous V.A. Vliyanie geometrii podlozhki na protsess kondensatsii ionno-plazmennykh pokrytij // VANT. “Vacuum, chistye metally, sverkhprovodniki”. – 2008. – Vol. 37. – No.1. – P. 72–76.

Khoroshikh V.M., Leonov S.A. O kharaktere vliyaniya razlichnykh gazov na protsess kondensatsii pokrytij iz plazmy

vakuumnoj dugi // Fizicheskaya inzheneriea poverkhnosti. – 2009. – Vol. 7. – No.3. – P. 268–272.

Leonov S.A., Khoroshikh V.M. Osazhdenie ionno-plazmennykh pokrytii iz khaotizirovannykh potokov plazmy vakuumnoj dugi // Preprint KhFTI 2013-4. – Kharkov: NNTs KhFTI, 2013. – 56 p.

Опубліковано
2014-09-04
Цитовано
Як цитувати
Aksenov, I. I., & Aksyonov, D. S. (2014). PHYSICAL ASPECTS OF VACUUM-ARC COATING DEPOSITION. Східно-європейський фізичний журнал, 1(3), 22-39. https://doi.org/10.26565/2312-4334-2014-3-02