METHOD OF CORRELATION FUNCTIONS FOR DENSE GASES AND LIQUIDS

  • Yu. M. Poluektov National Science Center “Kharkov Institute of Physics and Technology” 1, Akademicheskaya Str., 61108 Kharkov, Ukraine https://orcid.org/0000-0002-3207-3226

Анотація

The method of correlation functions for classical equilibrium many-particle systems, which accounts for a mean self-consistent field acting on each particle, has been formulated in the grand canonical ensemble representation. Inclusion of the self-consistent field effects into the formalism of correlation functions enables to describe systems in which the concentration of particles is not low. The account for the mean field is important for gases and liquids, where some notions used in the theory of rarefied gases lose their meaning, for example the mean free pass and pair collisions. The equation for the self-consistent field and the distribution function for arbitrary configuration energy is obtained from the requirement of minimum of the thermodynamic potential and it is shown that, if correctly formulated, the self-consistent field model leads to correct thermodynamic relations. The perturbation theory is constructed, based on the choice of the self-consistent field model as the main approximation. Thermodynamic functions, the heat capacities, the speed of sound and compressibility for a spatially homogeneous medium are calculated in the framework of the self-consistent field model for the pair interparticle interaction, as well as the main corrections to these quantities.

Завантаження

##plugins.generic.usageStats.noStats##

Біографія автора

Yu. M. Poluektov, National Science Center “Kharkov Institute of Physics and Technology” 1, Akademicheskaya Str., 61108 Kharkov, Ukraine

Посилання

Bol'cman L. Izbrannye trudy. – M.: Nauka, 1984. – 590 s.

Libov R. Vvedenie v teoriju kineticheskih uravnenij. – M.: Mir, 1974. – 371 s.

Bogoljubov N.N. Problemy dinamicheskoj teorii v statisticheskoj fizike. – M-L.: Gostehizdat, 1946. – 119 s.

Fisher I.Z. Statisticheskaja teorija zhidkostej. – M.: FML, 1961. – 280 s.

Smart Dzh. Jeffektivnoe pole v teorii magnetizma. – M.: Mir, 1968. – 271 s.

Hartri D. Raschjoty atomnyh struktur. - M.: IIL, 1960. – 272 s.

Fok V. Priblizhennyj sposob reshenija kvantovoj zadachi mnogih tel // UFN. – 1967. – T. 93. – No.2. – S. 342-363.

Bogoljubov N.N. O principe kompensacii i metode samosoglasovannogo polja // UFN. – 1959. – T. 67. - No.4. – S. 549 580.

Vlasov A.A. O vibracionnyh svojstvah elektronnogo gaza // ZhJeTF. – 1938. – T. 8. – No.3. – S. 291-318.

Vlasov A.A. Teorija mnogih chastic. - M-L.: GITTL, 1950. – 348 s.

Ginzburg V.L., Landau L.D., Leontovich M., Fok V. O nesostojatel'nosti rabot A.A. Vlasova po obobshhennoj teorii plazmy i teorii tverdogo tela // ZhJeTF. – 1946. – T. 16. – No.3. – S. 246-252.

Vlasov A.A. K obobshhennoj teorii plazmy i teorii tverdogo tela // Vestnik Moskovskogo universiteta. – 1946. – No.3-4. – S. 63-96.

Landau L.D. Teorija fermi-zhidkosti // ZhETF. – 1956. – T. 30. – No. 6. – S.1056-1064.

Akhiezer A.I., Krasil’nikov V.V., Peletminskij S.V., Yatsenko A.A. Research on superfluidity and superconductivity on the basis of the Fermi liquid concept // Phys.Reports. – 1994. – Vol. 245. – No.1&2. – P. 1-110.

Bardeen J., Cooper L., Schrieffer J. Theory of superconductivity // Phys. Rev. – 1957. – Vol. 108. - No.5. – P. 1175-1204.

Pitaevskij L.P. Vihrevye linii v neideal'nom Boze-gaze // ZhJeTF. – 1961. – T. 40. – P.646-651.

Gross E.P. Structure of a quantized vortex in boson system // Nuovo Cimento. –1961. – Vol. 20. – P.454-457.

Pethick C.J., Smith H. Bose-Einstein Condensation in Dilute Gases, 2nd edn. – Cambridge University Press, Cambridge. – 2008. – P.569.

Pitaevskii L.P. and Stringari S. Bose-Einstein Condensation. – Oxford University Press, Oxford. – 2003. – P.385.

Braun Dzh. Edinaja teorija jadernyh modelej i sil. - M.: Atomizdat, 1970. – 288 s.

Metod Hartri-Foka v teorii jadra / B.I.Barc, Ju.L.Bolotin, E.V.Inopin, V.Ju. Gonchar – K.: Naukova dumka, 1982. – 208 s.

Solov'jov V.G. Teorija atomnogo jadra. Kvazichasticy i fonony. – M.: Energoatomizdat, 1989. – 304 s.

Bazarov I.P. Statisticheskaja teorija kristallicheskogo sostojanija. – M.: Izdatel'stvo Moskovskogo universiteta, 1972. – 118 s.

Bazarov I.P., Gevorkjan Je.V., Kotenok V.V. Statisticheskaja teorija polimorfnyh prevrashhenij. – M.: Izdatel'stvo Moskovskogo universiteta, 1978. – 118 s.

Sljeter Dzh. Metody samosoglasovannogo polja dlja molekul i tvjordyh tel. – M.: Mir, 1978. – 662 s.

Vaks V.G., Larkin A.I., Pikin S.A. Metod samosoglasovannogo polja dlja opisanija fazovyh perehodov // ZhJeTF. – 1966. – T. 51. – S. 361-375.

Polujektov Ju.M. O samosoglasovannom opredelenii kvazisrednih v statisticheskoj fizike // FNT. – 1997. – T. 23. – No.9. – S. 915-922.

Kirzhnic D.A. Polevye metody teorii mnogih chastic. – M.: Gosatomizdat, 1963. – 344 s.

Polujektov Ju.M. Kvantovopolevoe opisanie mnogochastichnyh fermi-sistem s narushennymi simmetrijami // The Journal of Kharkiv National University, physical series “Nuclei, Particles, Fields”. – 2001. – No.522. – Iss.2(14). - S.3-16.

Poluektov Ju.M. Pro kvantovopol'ovij opis bagatochastinkovih fermі-sistem zі spontanno porushenimi simetrіjami // UFZh – 2005. – T. 50. - No.11. – S. 1303-1315. [cond-mat. arXiv:1303.4913 (2013)].

Polujektov Ju.M. Kvantovopolevoe opisanie sistem vzaimodejstvujushhih boze-chastic // The Journal of Kharkiv National University, physical series “Nuclei, Particles, Fields”. – 2002. – No.569. – Iss.3(19). - S.3-14.

Poluektov Ju.M. Pro kvantovopol'ovij opis bagatochastinkovih boze-sistem zі spontanno porushenimi simetrіjami // UFZh. – 2007. – T. 52, - No.6. – S. 578-594. [cond-mat. arXiv:1306.2103 (2013)].

Rejms S. Teorija mnogoelektronnyh sistem. – M.: Mir, 1976. – 333 s.

Landau L.D., Lifshic E.M. Statisticheskaja fizika. Chast' 1. – M.: Nauka, 1976. – 584 s.

Polujektov Ju.M. Model' samosoglasovannogo polja dlja prostranstvenno - neodnorodnyh boze-sistem // FNT. – 2002. – T. 28. – No.6. – S. 604-620.

Polujektov Ju.M. K teorii nelinejnogo kvantovannogo skaljarnogo polja s uchetom spontannogo narushenija simmetrii // The Journal of Kharkiv National University, physical series “Nuclei, Particles, Fields”. – 2009. - №859. – Iss.2(42). - S.9-20. [physics.gen-ph. arXiv:1507.00246 (2015)].

Polujektov Ju.M. Modificirovannaja teorija vozmushhenij dlja modeli Yukavy // Izvestija vuzov. Fizika. – 2010 – T.53. – No.2 – S. 54-61.

Verlet L. On the theory of classical fluids-III // Physica. – 1964. – Vol. 30. – P. 95-104.

Kovalenko N.P., Fisher I.Z. Metod integral'nyh uravnenij v statisticheskoj teorii zhidkostej // UFN. – 1972. – T. 108. – No. 2 – S. 209-239.

Krokston K. Fizika zhidkogo sostojanija. – M.: Mir, 1978. – 400 s.

Temperli G., Roulins Dzh., Rashbruk Dzh. Fizika prostyh zhidkostej. Statisticheskaja teorija. – M.: Mir, 1971. – 308 s.

Percus J.K., Yevick G.J. Analysis of classical statistical mechanics by means of collective coordinates // Phys. Rev. – 1958. – Vol.110. – No.1. – P. 1-13.

Wertheim M.S. Exact solutions of the Percus-Yevick equation for hard spheres // Phys. Rev. Lett. – 1963. – Vol.10. – No.8. – P. 321-323.

Percus J.K. Approximation method in classical statistical mechanics // Phys. Rev. Lett. – 1962. – Vol.8. – No.11. – P. 462-463.

Huang K. Statisticheskaja mehanika. – M.: Mir, 1966. – 520 s.

Poluektov Y.M., Soroka A.A., Shulga S.N. The self-consistent field model for Fermi systems with account of three-body interactions // arXiv:1503.02428v1 [cond-mat. stat-mech (2015)].

Aziz R.A., Slaman M.J. An examination of ab initio result for the helium potential energy curve // J. Chem. Phys. – 1991. – Vol.94. – No.12. – P. 8047-8053.

Anderson J.B., Traynor C.A., Boghosian B.M. An exact quantum Monte Carlo calculation of the helium- helium intermolecular potential // J. Chem. Phys. – 1993. – Vol.99. – No.1. – P. 345-351.

Poluektov Ju.M. Termodinamіchna teorіja zburen' dlja klasichnih sistem v nablizhennі samouzgodzhenogo polja // UFZh. – 2015. – T. 60. – No.6. – S. 556-563.

Tjablikov S.V. Metody kvantovoj teorii magnetizma. – M.: Nauka, 1975. – 528 s.

Fejnman R. Statisticheskaja mehanika. – M.: Mir, 1975. – 407 s.

Wagner F., Koppe H. Zur berechnung von spezifischer wörme und entropie in der quantenstatistik // Zeit. f. Naturforsch. – 1965. – Vol.20A. – P. 1553-1556.

Опубліковано
2015-09-22
Цитовано
Як цитувати
Poluektov, Y. M. (2015). METHOD OF CORRELATION FUNCTIONS FOR DENSE GASES AND LIQUIDS. Східно-європейський фізичний журнал, 2(2), 65-80. https://doi.org/10.26565/2312-4334-2015-2-08