MODELING OF AMYLOID FIBRIL BINDING TO THE LIPID BILAYER

  • Valeriya Trusova Department of Nuclear and Medical Physics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61022, Ukraine https://orcid.org/0000-0002-7087-071X

Анотація

Using the different computational approaches, we constructed the core region of amyloid fibrils from lysozyme, Aβ-protein and apolioprotein A-I, and studied the adsorption of fibrillar aggregates onto lipid bilayer surface. The structures of amyloids differing in their twisting angle were generated with CreateFibril software. The stability of the obtained assemblies was assessed by means of AQUASOL tool, and the twisting angle providing the most stable conformation was identified. The energetically favorable orientation of the fibrils within the lipid membranes was predicted based on PPM server. It was found that increasing amyloid periodicity bring about the rise in free energy of peptide transfer from aqueous to membrane phase.

Завантаження

##plugins.generic.usageStats.noStats##

Біографія автора

Valeriya Trusova, Department of Nuclear and Medical Physics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61022, Ukraine

Посилання

Harrison R.S., Sharpe P.C., Singh Y., Fairlie D.P. Amyloid peptides and proteins in review // Rev. Physiol. Biochem. Pharmacol. – 2007. – Vol. 159. – P. 1-77.

Chiti F. Dobson C. Protein misfolding, functional amyloid, and human disease // Ann. Rev. Biochem. – 2006. – Vol. 75. – P. 333-366.

Pham C.L.L., Kwan A.H., Sunde M. Functional amyloid: widespread in nature, diverse in purpose // Essays Biochem. – 2014. – Vol. 56. – P. 207-219.

Wei W., Wang X., Kusiak J.W. Signaling events in amyloid β-peptide-induced neuronal death and insulin-like growth factor I protection // J. Biol. Chem. – 2002. – Vol. 277. – P. 17649-17656.

Nelson R., Sawaya M., Balbirnie M., Madsen A., Riekel C., Grothe R., Eisenberg D. Structure of the cross-beta spine of amyloid-like fibrils // Nature. – 2005. – Vol. 435. – P. 773-778.

Makin O., Atkins E., Sikorski P., Johansson J., Serpell L. Molecular basis for amyloid fibril formation and stability // Proc. Natl. Acad. Sci. USA. – 2005. – Vol. 105. – P. 315-320.

Lara C., Adamcik J., Jordens S., Mezzenga R. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons // Biomacromolecules. – 2011. – Vol. 12. – P. 1868-1875.

Usov I., Adamcik J., Mezzenga R. Polymorphism in bovine serum albumin fibrils: morphology and statistical analysis // Faraday Discuss. – 2013. – Vol. 166. – P. 151-162.

Aggeli A. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers // Proc. Natl. Acad. Sci. USA. – 2001. – Vol. 98. – P. 11857-11862.

Nyrkova I. Self-assembly and structure transformations in living polymers forming fibrils // Eur. Phys. J. B. – 2000. – Vol. 17. – P. 499-513.

Periole X., Rampioni A., Vendruscolo M., Mark A. Factors that affect the degree of twist in β-sheet structures: a molecular dynamics simulation study of cross-β filament of the GNNQQNY peptide // J. Phys. Chem. B. – 2009. – Vol. 113. – P. 1728-1737.

Adamcik J., Mezzenga R. Protein fibrils from a polymer physics perspective // Macromolecules. – 2012. – Vol. 45. – P. 1137-1150.

Petkova A. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils // Science. – 2005. – Vol. 307. – P. 262-265.

Zerovnik E. Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease // Eur. J. Biochem. – 2002. – Vol. 269. – P. 3362-3371.

Trusova V., Gorbenko G., Girych M., Adachi E., Mizuguchi C., Sood R., Kinnunen P., Saito H. Membrane effects of Nterminal fragment of apolipoprotein A-I: a fluorescent probe study // J. Fluoresc. – 2015. – Vol. 25. – P. 253-261.

Kastorna A., Trusova V., Gorbenko G., Kinnunen P. Membrane effects of lysozyme amyloid fibrils // Chem. Phys. Lipids. – 2012. – Vol. 165. – P. 331-337.

Smaoui M. Computational assembly of polymorphic amyloid fibrils reveals stable aggregates // Biophys. J. – 2013. – Vol. 104. – P. 683-693.

Schneidman-Duhovny D., Inbar Y., Nussimov R., Wolfson H. PatchDock and SymmDock: servers for rigid and symmetric docking // Nucl. Acids Res. – 2005. – Vol. 33. – P. W363-W367.

Andrusier N., Nussimov R., Wolfson H. FireDock: fast interaction refinement in molecular docking // Proteins. – 2007. – Vol. 69. – P. 139-159.

Girych M., Gorbenko G., Trusova V., Adachi E., Mizuguchi C., Nagao K., Kawashima H., Akaji K., Lund-Katz S., Phillips M., Saito H. Interaction of Thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: resonance energy transfer study // J. Struct. Biol. – 2014. – Vol. 185. – P. 116-124.

Koehl P., Delarue M. AQUASOL: an efficient solver for the dipolar Poisson-Boltzmann-Langevin equation // J. Chem. Phys. – 2010. – Vol. 132. – P. 064101-064117.

Dzwolak W., Pecul M. Chiral bias of amyloid fibrils revealed by the twisted conformation of Thioflavin T: an induced circular dichroism/DFT study // FEBS Lett. – 2005. – Vol. 579. – P. 6601-6603.

Adamcik J., Mezzenga R. Adjustable twisting periodic pitch of amyloid fibrils // Soft Matter. – 2011. – Vol. 7. – P. 5437-5443.

Sunde M. Common core structure of amyloid fibrils by synchrotron X-ray diffraction // J. Mol. Biol. – 1997. – Vol. 273. – P. 729-739.

Lomize M., Pogozheva I., Joo H., Mosberg H., Lomize A. OPM database and PPM web server: resources for positioning of proteins in membranes // Nucl. Acids Res. – 2012. – Vol. 40. – P. D370-D376.

Lomize A., Pogozheva I., Mosberg H. Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes // J. Chem. Inf. Model. – 2011. – Vol. 51. – P. 930-946.

White S., Whimley W. Membrane protein folding and stability: physical principles // Annu. Rev. Biophys. Biomol. Struct. – 1999. – Vol. 28. – P. 319-365.

Опубліковано
2015-09-22
Цитовано
Як цитувати
Trusova, V. (2015). MODELING OF AMYLOID FIBRIL BINDING TO THE LIPID BILAYER. Східно-європейський фізичний журнал, 2(2), 51-58. https://doi.org/10.26565/2312-4334-2015-2-06