Quantum-Corrected Thermodynamics of AdS-Rindler Black Holes

  • Арам Бахроз Брзо Фiзичний факультет, Педагогiчний коледж, Унiверситет Сулейманi, Сулейманi, регiон Курдистан, Iрак; Центр дослiджень i розвитку, Унiверситет Сулейманi, Сулейманi, Курдистан, Iрак https://orcid.org/0000-0002-1257-9377
  • Пешваз Абдулкарiм Абдул Фiзичний факультет, Науковий коледж, Унiверситет Чармо: Чамчамал, Сулейманi, регiон Курдистан, Iрак https://orcid.org/0000-0002-2144-8336
  • Бенам Пурхасан Центр теоретичної фiзики, Хазарський унiверситет, Баку, Азербайджан; Центр впливу дослiджень & Результатiв, Iнститут iнженерiї та технологiй Унiверситету Чiткара, Унiверситет Чiткара, Раджпура, Пенджаб, Iндiя https://orcid.org/0000-0003-1338-7083
Ключові слова: гiперболiчнi чорнi дiри, квантова корекцiя ентропiї, аналiз стабiльностi

Анотація

Ми дослiджуємо термодинамiчнi властивостi та стабiльнiсть гiперболiчних AdS-Rindler чорних дiр, пiдкреслюючи вплив непертурбативної квантової корекцiї. Використовуючи стандартнi термодинамiчнi формулювання разом з методом диска Пуанкаре, ми обчислюємо ключовi величини, включаючи масу, температуру Хокiнга, ентропiю та теплоємнiсть. Щоб врахувати квантовi гравiтацiйнi ефекти, ми вводимо експоненцiальну корекцiю до ентропiї Бекенштейна-Хокiнга та систематично виводимо мо-
дифiкованi термодинамiчнi параметри. Хоча скоригована ентропiя призводить до рiвномiрного зсуву в багатьох величинах, теплоємнiсть зазнає нетривiальних змiн, що призводить до вужчих та гладкiших стабiльних областей (Δr(d)) для кожного вимiру d. Бiльше того, згладжування рiзких варiацiй ентропiї поблизу rh=1 пiдкреслює, як геометрiя горизонту керує впливом квантових корекцiй. Це дослiдження пропонує нову систематичну iдентифiкацiю стабiльних областей до та пiсля експоненцiальних корекцiй (AdS-Рiндлерових) чорних дiр, пропонуючи нове розумiння взаємодiї геометрiї, розмiрностi та квантових
ефектiв у термодинамiцi чорних дiр.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

J. D. Bekenstein, ”Black holes and entropy,” Phys. Rev. D, 7, 2333 (1973). https://doi.org/10.1103/physrevd.7.2333

S. W. Hawking, ”Particle Creation by Black Holes,” Commun. Math. Phys. 43, 199 (1975). https://doi.org/10.1007/bf02345020

J.M. Bardeen, B. Carter, and S.W. Hawking, ”The four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973). https://doi.org/10.1007/bf01645742

D.N. Page, ”Information in black hole radiation,” Phys. Rev. Lett. 71, 3743 (1993). https://doi.org/10.1103/physrevlett.71.3743

A. Strominger, and C. Vafa, ”Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B, 379, 99 (1996). https://doi.org/10.1016/0370-2693(96)00345-0

J.M. Maldacena, ”The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998). https://doi.org/10.4310/atmp.1998.v2.n2.a1

E. Witten, ”Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998). https://doi.org/10.4310/atmp.1998.v2.n2.a2

S.N. Gashti, M.A.S. Afshar, M.R. Alipour, I. Sakallı, B. Pourhassan, and J. Sadeghi, ”Assessing WGC Compatibility in ModMax Black Holes via Photon Spheres Analysis and WCCC Validation,” arXiv preprint arXiv, 2504, 11939 (2025). https://doi.org/10.48550/arXiv.2504.11939

S.N. Gashti, B. Pourhassan, and I. Sakallı, ”Thermodynamic topology and phase space analysis of AdS black holes through non-extensive entropy perspectives,” The European Physical Journal C, 85(3), 305 (2025). https://doi.org/10.1140/epjc/s10052-025-14035-x

A.B. Brzo, S.N. Gashti, B. Pourhassan, and S. Beikpour, ”Thermodynamic Topology ofAdS Black Holes withinNon-Commutative Geometry and Barrow Entropy,” Nuclear Physics B, 1012, 116840 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116840

B. Pourhassan, M. Faizal, S. Upadhyay, and L. Al Asfar, ”Thermal Fluctuations in a Hyperscaling Violation Background,” Eur. Phys. J. C, 77, 555 (2017). https://doi.org/10.1140/epjc/s10052-017-5125-x

S. Upadhyay, B. Pourhassan, and H. Farahani, ”P-V criticality of first-order entropy corrected AdS black holes in massive gravity,” Phys. Rev. D, 95, 106014 (2017). https://doi.org/10.1103/PhysRevD.95.106014

B. Pourhassan, ”Exponential corrected thermodynamics of black holes,” J. Stat. Mech. 2107, 073102 (2021). https://doi.org/10.1088/1742-5468/ac0f6a

R.B. Wang, S.J. Ma, L. You, Y.C. Tang, Y.H. Feng, X.R. Hu, and J.B. Deng, ”Thermodynamics of AdS-Schwarzschild-like black hole in loop quantum gravity,” The European Physical Journal C, 84(11), 1161 (2024). https://doi.org/10.1140/epjc/s10052-024-13505-y

J.-P. Ye, Z.-Q. He, A.-X. Zhou, Z.-Y. Huang, and J.-H. Huang, ”Shadows and photon rings of a quantum black hole,” Physics Letters B, 851, 138566 (2024). https://doi.org/10.1016/j.physletb.2024.138566

F.G. Menezes, H.A. Borges, I.P.R. Baranov, and S. Carneiro, ”Thermodynamics of effective loop quantum black holes,” arXiv preprint arXiv, 2504, 06964 (2025). https://doi.org/10.48550/arXiv.2504.06964

L. You, R.-B.Wang, Y.-C. Tang, J.-B. Deng, and X.-R. Hu, ”Thermal chaos of quantum-corrected-AdS black hole in the extended phase space,” The European Physical Journal C, 84, 11 (2024). https://doi.org/10.1140/epjc/s10052-024-13417-x

B. Hamil, B. C. L¨utf¨uo˘glu, and L. Dahbi, ”Quantum-corrected Schwarzschild AdS black hole surrounded by quintessence: Thermodynamics and shadows,” Modern Physics Letters A, 39(33n34), 2450161 (2024). https://doi.org/10.1142/s021773232450161x

B. Tan, ”Thermodynamics of high order correction for Schwarzschild-AdS black hole in non-commutative geometry,” Nuclear Physics B, 1014, 116868 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116868

R. Emparan, and J.M. Mag´an, ”Tearing down spacetime with quantum disentanglement,” Journal of High Energy Physics, (3), 078 (2024). https://doi.org/10.1007/jhep03(2024)078

P.Z. He, and H.Q. Zhang, ”Holographic timelike entanglement entropy from Rindler method,” Chinese Physics C, 48(11), 115113 (2024). https://doi.org/10.1088/1674-1137/ad57a8

X.X. Ju, B.H. Liu, W.B. Pan, Y.W. Sun, and Y.T. Wang, ”Squashed entanglement from generalized Rindler wedge,” Journal of High Energy Physics, 9, 1-48 (2025). https://doi.org/10.1007/jhep09(2025)006

Q. Wen, M. Xu, and H. Zhong, ”Timelike and gravitational anomalous entanglement from the inner horizon,” SciPost Physics, 18(6), 204 (2025). https://doi.org/10.21468/scipostphys.18.6.204

R.X. Miao, ”Casimir effect and holographic dual of wedges,” Journal of High Energy Physics, 6, 1-35 (2024). https://doi.org/10.1007/jhep06(2024)084

R. Campos Delgado, ”Quantum gravitational corrections to the entropy of a Reissner–Nordstr¨om black hole,” The European Physical Journal C, 82(3), 272 (2022). https://doi.org/10.1140/epjc/s10052-022-10232-0

S. Wu, and C. Liu, ”The Quantum Corrections on Kerr-Newman Black Hole Thermodynamics by the Generalized Uncertainty Principle,” International Journal of Theoretical Physics, 59, 2681-2693 (2020). https://doi.org/10.1007/s10773-020-04468-3

H.L. Li, D.W. Song, andW. Li, ”Phase transition and entropy correction of a quantum correction black hole close to planck scale,” General Relativity and Gravitation, 51, 1-14 (2019). https://doi.org/10.1007/s10714-019-2504-7

D. Ma, T. Huo, and C. Liu, ”Thermodynamics and its Quantum Correction of Vacuum Nonsingular Black Hole,” Astrophysics, 67(4), 556-570 (2025). https://doi.org/10.1007/s10511-025-09851-8

J.J. Song, and C.Z. Liu, ”Thermodynamics in a quantum corrected Reissner–Nordstr¨om–AdS black hole and its GUP-corrections,” Chinese Physics B, 33(4), 040402 (2024). https://doi.org/10.1088/1674-1056/ad1a8a

B. Pourhassan, ”Resolving the information loss paradox from the five-dimensional supergravity black hole,” Nuclear Physics B, 976, 115713 (2022). https://doi.org/10.1016/j.nuclphysb.2022.115713

B. Pourhassan, and M. Faizal, ”Thermal Fluctuations in a Charged AdS Black Hole,” Europhysics Letters, 111, 40006 (2015). https://doi.org/10.1209/0295-5075/111/40006

S. Upadhyay, N. ul Islam, and P.A. Ganai, ”A modified thermodynamics of rotating and charged BTZ black hole,” Journal of Holography Applications in Physics, 2(1), 25-48 (2022). https://doi.org/10.1209/0295-5075/111/40006

A. Sen, ”Logarithmic Corrections to N=2 Black Hole Entropy: An Infrared Window into the Microstates,” General Relativity and Graviton, 44(5), 1207-1266 (2012). https://doi.org/10.1007/s10714-012-1336-5

B. Pourhassan, M. Faizal, and U. Debnath, ”Effects of Thermal Fluctuations on the Thermodynamics of Modified Hayward Black Hole,” Eur. Phys. J. C, 76, 145 (2016). https://doi.org/10.1140/epjc/s10052-016-3998-8

R. Ali, R. Babar, Z. Akhtar, and A. Ovgun, ”Thermodynamics and logarithmic corrections of symmergent black holes,” Results Phys. 46, 106300 (2023). https://doi.org/10.1016/j.rinp.2023.106300

F.M. Mele, J.M¨unch, and S. Pateloudis, ”Quantum corrected polymer black hole thermodynamics: mass relations and logarithmic entropy correction,” Journal of Cosmology and Astroparticle Physics, 02, 011 (2022). https://doi.org/10.1088/1475-7516/2022/02/011

B. Pourhassan, R.C. Delgado, S. Upadhyay, H. Farahani, and H. Kumar, ”Quantum gravitational corrections to the geometry of charged AdS black holes,” Nucl. Phys. B, 1012, 116830 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116830

B. Pourhassan, X. Shi, S.S.Wani, S. Al-Kuwari, ˙I. Sakallı, N.A. Shah, M. Faizal, and A. Shabir, ”Quantum gravitational corrections to a Kerr black hole using Topos theory,” Annals of Physics, 477, 169983 (2025). https://doi.org/10.1016/j.aop.2025.169983

R.M. Wald, General Relativity, (University of Chicago Press, 1984).

S.M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, (Addison Wesley, 2004).

X. Calmet, and F. Kuipers, ”Quantum Gravitational Corrections to the Entropy of a Schwarzschild Black Hole,” Phys. Rev. D, 104(6), 066012 (2021). https://doi.org/10.1103/physrevd.104.066012

A. Chatterjee, and A. Ghosh, ”Exponential corrections to black hole entropy,” Phys. Rev. Lett. 125(4), 041302 (2020). https://doi.org/10.1103/physrevlett.125.041302

B. Pourhassan, H. Farahani, F. Kazemian, I. Sakalli, S. Upadhyay, and D.V. Singh, ”Non-perturbative correction on the black hole geometry,” Physics of the Dark Universe, 44, 101444 (2024). https://doi.org/10.1016/j.dark.2024.101444

H. Han, and B. Gwak, ”Effects of fluctuations in higher-dimensional AdS black holes,” Physical Review D, 110, 066013 (2024). https://doi.org/10.1103/physrevd.110.066013

B. Pourhassan, H. Aounallah, M. Faizal, S. Upadhyay, S. Soroushfar, Y.O. Aitenov, and S.S. Wani, ”Quantum Thermodynamics of an M2-M5 Brane System,” Journal of High Energy Physics, 05, 030 (2022). https://doi.org/10.1007/jhep05(2022)030

H. Kumar, B. Pourhassan, and I. Sakalli, ”Stabilizing Effects of Higher-Order Quantum Corrections on Charged BTZ Black Hole Thermodynamics,” Nucl. Phys. B, 1007, 116672 (2024). https://doi.org/10.1016/j.nuclphysb.2024.116672

B. Pourhassan, I. Sakalli, and A.B. Brzo, ”Thermal Fluctuation Effects on Shear Viscosity to Entropy Ratio in Five-Dimensional Kerr-Newman Black Holes,” Eur. Phys. J. C, 85, 206 (2025). https://doi.org/10.1140/epjc/s10052-025-13893-9

R. Emparan, ”AdS/CFT duals of topological black holes and the entropy of zero-energy states,” Journal of High Energy Physics, 06, 036 (1999). https://doi.org/10.1088/1126-6708/1999/06/036

D. Ma, T. Huo, and C. Liu, ”Thermodynamics and its Quantum Correction of Vacuum Nonsingular Black Hole,” Astrophysics, 67(4), 556-570 (2024). https://doi.org/10.1007/s10511-025-09851-8

Ali O¨ vgu¨n, Reggie C. Pantig, and A´ ngel Rinco´n, ”Shadow and greybody bounding of a regular scale-dependent black hole solution,” Annals of Physics, 463, 169625 (2024). https://doi.org/10.1016/j.aop.2024.169625

J.J. Song, and C.Z. Liu, ”Thermodynamics in a quantum corrected Reissner-Nordstr¨om-AdS black hole and its GUP-corrections,” Chinese Physics B, 33(4), 040402 (2024). https://doi.org/10.1088/1674-1056/ad1a8a

Q.Q. Li, Y. Zhang, Q. Sun, C.H. Xie, and Y.L. Lou, ”Phase structure of quantum corrected charged AdS black hole surrounded by perfect fluid dark matter,” Chinese Journal of Physics, 92, 1-9 (2024). https://doi.org/10.1016/j.cjph.2024.09.001

H. Casini, M. Huerta, and R.C. Myers, ”Towards a derivation of holographic entanglement entropy,” Journal of High Energy Physics, 5, 1-41 (2011). https://doi.org/10.1007/jhep05(2011)036

I.S. Gradshteyn, and I.M. Ryzhik, Table of integrals, series, and products, Academic press, 2014).

B.P. Dolan, ”The cosmological constant and black hole thermodynamic potentials,” Class. Quantum Gravity, 28, 125020 (2011). https://doi.org/10.1088/0264-9381/28/12/125020

J. Tarrio, and S. Vandoren, ”Black holes and black branes in Lifshitz spacetimes,” J. High Energy Phys. 1109, 017 (2011). https://doi.org/10.1007/JHEP09(2011)017

Опубліковано
2025-12-08
Цитовано
Як цитувати
Брзо, А. Б., Абдул, П. А., & Пурхасан, Б. (2025). Quantum-Corrected Thermodynamics of AdS-Rindler Black Holes. Східно-європейський фізичний журнал, (4), 75-86. https://doi.org/10.26565/2312-4334-2025-4-07
Розділ
Статті