Effect of Ion Temperature on the Dynamics of Analytical Solitary Wave Solution of the Dust Ion Acoustic Waves for the Damped Forced KdV Equation in q−nonextensive Plasmas
Abstract
This paper examines the dynamical properties of the analytical solitary wave solution of dust ion acoustic (DIA) solitary waves induced by the damped forced Korteweg-de Vries (DFKdV) equation in an unmagnetized collisional dusty plasma that contains neutral particles, q-nonextensive electrons, positively charged ions, and negatively charged dust grains in the presence of an external periodic force. To obtain the damped forced
Korteweg-de Vries (DFKdV) equation, the reductive perturbation approach was developed. It is observed that both the compressive and rarefactive dust-ion acoustic (DIA) solitary-wave solutions are possible for this plasma model. The effects of a number of physical parameters are taken into account: the entropic index (q), dust ion collisional frequency (νid0), traveling wave speed (M), periodic force frequency (ω), ion-to-electron
temperature ratio (σ), the parameter that is the ratio between the unperturbed densities of the dust ions and electrons (μ), the strength and frequency of the external periodic force (f0). It is observed that those parameters have significant effects on the structures of the damped forced dust-ion acoustic solitary waves. The implication of the outcomes of this investigation may be relevant for understanding the dynamics of dust-ionacoustic (DIA) solitary waves in laboratory plasma as well as in space plasma environment.
Downloads
References
F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 3rd edition, (Springer, 2016).
H. Schamel, and V.I. Maslov, ”Adiabatic growth of electron holes in current-carrying plasmas”, Physica Scripta, T50, 42 (1994). https://doi.org/10.1088/0031-8949/1994/t50/006
V.I. Maslov, and H.Schamel, “Growing electron holes in drifting plasmas”, Physics Letters A, 178, 171 (1993). https://doi.org/10.1088/0031-8949/1994/t50/006
H. Schamel, and V. Maslov, ”Langmuir Wave Contraction Caused by Electron Holes,” Physica Scripta, 82, 122 (1999). https://doi.org/10.1238/physica.topical.082a00122
D. Batani, V. Maslov, and D. Bondar, et al. ”Smoothing of transverse nonuniformities at the critical density in laser interaction with nonuniform plasmas,” Laser and Particle Beams, 43, (e3) (2025). https://doi.org/10.1017/lpb.2025.10003
V.I. Maslov, ”Electron beam excitation of a potential well in a magnetized plasma waveguide,” Physics Letters A, 165(1), 63–68 (1992). https://doi.org/10.1016/0375-9601(92)91055-v
V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya, et al. ”Excitation and properties of large amplitude soliton near foil at laser pulse interaction with it,” Problems of Atomic Science and Technology, (1), 324–327 (2012).
A. Scott, Encyclopedia of nonlinear science, 1st edition, (Routledge, 2006).
N.J. Zabusky, and M.D. Kruskal, ”Interaction of solitons in a collisionless plasma and the recurrence of initial states,” Physical review letters, 15(6), 240 (1965). https://doi.org/10.1103/physrevlett.15.240
P.K. Shukla, ”Nonlinear waves and structures in dusty plasmas,” Physics of Plasmas, 10(5), 1619-1627 (2003). https://doi.org/10.1063/1.1557071
A.P. Misra, and C. Bhowmik, ”Nonplanar ion-acoustic waves in a quantum plasma,” Physics Letters A, 369(1-2), 90-97 (2007). https://doi.org/10.1016/j.physleta.2007.04.066
F. Verheest, ”Waves and instabilities in dusty space plasmas,” Space Science Reviews, 77(3), 267-302 (1996). https://doi.org/10.1007/bf00226225
B. Tian, and Y.T. Gao, ”Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas,” Physics Letters A, 362(4), 283-288 (2007). https://doi.org/10.1016/j.physleta.2006.10.094
R. Bharuthram, and P.K. Shukla, ”Large amplitude ion-acoustic double layers in a double Maxwellian electron plasma,” The Physics of fluids, 29(10), 3214-3218 (1986). https://doi.org/10.1063/1.865839
L.L. Yadav, and S.R. Sharma, ”Obliquely propagating ion-acoustic double layers in a multicomponent magnetized plasma,” Physica scripta, 43(1), 106 (1991). https://doi.org/10.1088/0031-8949/43/1/018
F.B. Rizzato, ”Weak nonlinear electromagnetic waves and low-frequency magnetic-field generation in electron-positron-ion plasmas,” Journal of plasma physics, 40(2), 289-298 (1988). https://doi.org/10.1017/s0022377800013283
H.R. Miller, and P.J. Wiita, Active galactic nuclei, vol. 30, (1988).
V.S. Beskin, A.V. Gurevich, and Y.N. Istomin, Physics of the pulsar magnetosphere, (Cambridge university press, 1993).
F.C. Michel, ”Theory of pulsar magnetospheres,”Reviews of Modern Physics, 54(1), 1 (1982). https://doi.org/10.1103/revmodphys.54.1
H.Washimi, and T. Taniuti, ”Propagation of ion-acoustic solitary waves of small amplitude,” Physical Review Letters, 17(19), 996 (1966). https://doi.org/10.1103/physrevlett.17.996
B.B. Kadomtsev, and V.I. Karpman, ”Nonlinear waves,” Soviet Physics Uspekhi, 14(1), 40 (1971).
D. Gresillon, and F. Doveil, ”Normal modes in the ion-beam-plasma system,” Physical Review Letters, 34(2), 77 (1975). https://doi.org/10.1103/physrevlett.34.77
B.C. Kalita, and S.N. Barman, ”Fully nonlinear ion-acoustic solitary waves in a warm magnetized plasma with electron inertia,” Astrophysics and Space Science, 330, 311-316 (2010). https://doi.org/10.1007/s10509-010-0394-y
S.A. Boldyrev, S.V. Vladimirov, and V.N. Tsytovich, ”Coupled Langmuir and ion-acoustic solitons,” Soviet Journal of Plasma Physics, 18(11), 727-732 (1992).
H. Ikezi, R.J. Taylor, and D.R. Baker, ”Formation and interaction of ion-acoustic solitions,” Physical Review Letters, 25(1), 11 (1970). https://doi.org/10.1103/physrevlett.25.11
H. Ikezi, Experiments on ion-acoustic solitary waves. Research Report: (IPPJ, 1973).
Y. Nakamura, and T. Ogino, ”Numerical and laboratory experiments on spherical ion-acoustic solitons,” Plasma Physics, 24(10), 1295 (1982). https://doi.org/10.1088/0032-1028/24/10/007
G.O. Ludwig, J.L. Ferreira, and Y. Nakamura, ”Observation of ion-acoustic rarefaction solitons in a multicomponent plasma with negative ions,” Physical review letters, 52(4), 275 (1984). https://doi.org/10.1103/physrevlett.52.275
J.L. Cooney, M.T. Gavin, and K.E. Lonngren, ”Experiments on Korteweg–de Vries solitons in a positive ion–negative ion plasma,” Physics of Fluids B: Plasma Physics, 3(10), 2758-2766 (1991). https://doi.org/10.1063/1.859912
W.H. Julian, and P. Goldreich, ”Pulsar electrodynamics,” Astrophys. J, 157, 869 (1969). https://doi.org/10.1086/150119
E. Tandberg-Hanssen, and A.G. Emslie, The physics of solar flares, vol. 14, (Cambridge University Press, 1988).
C.K. Goertz, ”Dusty plasmas in the solar system. Reviews of Geophysics,” 27(2), 271-292 (1989). https://doi.org/10.1029/rg027i002p00271
O. Havnes, T. Aslaksen, F. Melandsø, and T. Nitter, ”Collisionless braking of dust particles in the electrostatic field of planetary dust rings,” Physica Scripta, 45(5), 491 (1992). https://doi.org/10.1088/0031-8949/45/5/012
E.C. Whipple, T.G. Northrop, and D.A. Mendis, ”The electrostatics of a dusty plasma,” Journal of Geophysical Research: Space Physics, 90(A8), 7405-7413 (1985). https://doi.org/10.1029/ja090ia08p07405
P.K. Shukla, and A.A. Mamun, Introduction to dusty plasma physics, 1st edn. (IOP, London, 2002).
F. Verheest, ”Waves and instabilities in dusty space plasmas,” Space Science Reviews, 77(3), 267-302 (1996). https://doi.org/10.1007/bf00226225
L. Tonks, and I. Langmuir, ”Oscillations in ionized gases,” Physical Review, 33(2), 195 (1929). https://doi.org/10.1103/physrev.33.195
R.W. Revans, ”The transmission of waves through an ionized gas,” Physical Review, 44(10), 798 (1933). https://doi.org/10.1103/physrev.44.798
M.A. Leontovich, editor, Reviews of Plasma Physics, (Springer Science & Business Media, (2012).
H. Ikezi, R.J. Taylor, and D.R. Baker, ”Formation and interaction of ion-acoustic solitions,” Physical Review Letters, 25(1), 11 (1970). https://doi.org/10.1103/physrevlett.25.11
A.A. Mamun, ”Arbitrary amplitude dust-acoustic solitary structures in athree-component dusty plasma,” Astrophysics and Space Science, 268, 443-454 (1999). https://doi.org/10.1023/a:1002031022895
N.N. Rao, P.K. Shukla, and M.Y. Yu, ”Dust-acoustic waves in dusty plasmas,” Planetary and space science, 38(4), 543-546 (1990). https://doi.org/10.1016/0032-0633(90)90147-i
P.K. Shukla, M.Y. Yu, and R. Bharuthram, ”Linear and nonlinear dust drift waves,” Journal of Geophysical Research: Space Physics, 96(A12), 21343-21346 (1991). https://doi.org/10.1029/91ja02331
F. Melandso/, ”Lattice waves in dust plasma crystals,” Physics of Plasmas, 3(11), 3890-3901 (1996). https://doi.org/10.1063/1.871577
P.K. Shukla, and R.K. Varma, ”Convective cells in nonuniform dusty plasmas,” Physics of Fluids B: Plasma Physics, 5(1), 236-237 (1993). https://doi.org/10.1063/1.860864
R.L. Merlino, A. Barkan, C. Thompson, and N. D’angelo, ”Laboratory studies of waves and instabilities in dusty plasmas,” Physics of Plasmas, 5(5), 1607-1614 (1998). https://doi.org/10.1063/1.872828
M. Tribeche, and T.H. Zerguini, ”Small amplitude Bernstein–Greene–Kruskal solitary waves in a thermal charge-varying dusty plasma,” Physics of Plasmas, 11(8), 4115-4122 (2004). https://doi.org/10.1063/1.1768957
J. Tamang, K. Sarkar, and A. Saha, ”Solitary wave solution and dynamic transition of dust ion acoustic waves in a collisional nonextensive dusty plasma with ionization effect,” Physica A: Statistical Mechanics and its Applications, 505, 18-34 (2018). https://doi.org/10.1016/j.physa.2018.02.213
P.K. Shukla, and V.P. Silin, ”Dust ion-acoustic wave,” Physica Scripta, 45(5), 508 (1992). https://doi.org/10.1088/0031-8949/45/5/015
A. Barkan, N. D’angelo, and R.L. Merlino, ”Experiments on ion-acoustic waves in dusty plasmas,” Planetary and Space Science, 44(3), 239-242 (1996). https://doi.org/10.1016/0032-0633(95)00109-3
Y. Nakamura, H. Bailung, and P.K. Shukla, ”Observation of ion-acoustic shocks in a dusty plasma,” Physical review letters, 83(8), 1602 (1999). https://doi.org/10.1103/physrevlett.83.1602
A. R´enyi, ”On a new axiomatic theory of probability,” Acta Mathematica Academiae Scientiarum Hungarica, 6, 285-335 (1955). https://doi.org/10.1007/bf02024393
L. Liyan, and D. Jiulin, ”Ion acoustic waves in the plasma with the power-law q-distribution in nonextensive statistics,” Physica A: Statistical Mechanics and its Applications, 387(19-20), 4821-4827 (2008). https://doi.org/10.1016/j.physa.2008.04.016
C. Tsallis, ”Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years,” Brazilian Journal of Physics, 39, 337-356 (2009). https://doi.org/10.1590/s0103-97332009000400002
A. Saha, ”Bifurcation, periodic and chaotic motions of the modified equal width-Burgers (MEW-Burgers) equation with external periodic perturbation,” Nonlinear Dynamics, 87(4), 2193-2201 (2017). https://doi.org/10.1007/s11071-016-3183-5
L. Mandi, K.K. Mondal, and P. Chatterjee, ”Analytical solitary wave solution of the dust ion acoustic waves for the damped forced modified Korteweg-de Vries equation in q-nonextensive plasmas,” The European Physical Journal Special Topics, 228(12), 2753-2768 (2019). https://doi.org/10.1140/epjst/e2019-900047-4
A. Saha, and P. Chatterjee, ”Solitonic, periodic and quasiperiodic behaviors of dust ion acoustic waves in superthermal plasmas,” Brazilian Journal of Physics, 45, 419-426 (2015). https://doi.org/10.1007/s13538-015-0329-8
N.S. Saini, ”Dust ion acoustic rogue waves in superthermal warm ion plasma,” Journal of Plasma Physics, 81(3), 905810316 (2015). https://doi.org/10.1017/s0022377815000082
K. Nozaki, and N. Bekki, ”Chaos in a perturbed nonlinear Schr¨odinger equation,” Physical review letters, 50(17), 1226 (1983). https://doi.org/10.1103/physrevlett.50.1226
W. Beiglbock, J.P. Eckmann, H. Grosse, M. Loss, S. Smirnov, et al. Concepts and Results in Chaotic Dynamics, (Springer, Berlin 2000).
P. Chatterjee, R. Ali, and A. Saha, ”Analytical solitary wave solution of the dust ion acoustic waves for the damped forced Korteweg–de Vries equation in superthermal plasmas,” Zeitschrift f¨ur Naturforschung A, 73(2), 151-159 (2018). https://doi.org/10.1515/zna-2017-0358
A.S. Bains, M. Tribeche, and T.S. Gill, ”Modulational instability of ion-acoustic waves in a plasma with a q-nonextensive electron velocity distribution,” Physics of Plasmas, 18(2), (2011). https://doi.org/10.1063/1.3554658
Copyright (c) 2025 Sarbamon Tokbi, Satyendra Nath Barman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



