Anisotropic Dark Energy Cosmology in the Framework of f (R, Lm) Gravity
Abstract
In this paper, we investigated the Locally Rotationally Symmetric (LRS) Bianchi Type-I cosmological model with dark energy in the framework of f (R, Lm) gravity theory, where R is the Ricci scalar and Lm is the matter Lagrangian. Using the functional form f (R, Lm) = R/2 + Lαm + β with Lm = ρ, and applying the special law of variation for the Hubble parameter, we derived exact solutions to the field equations and analyzed the physical and dynamical properties of the universe. Our results show that the model exhibits accelerated expansion consistent with the observational data, with the energy density decreasing and the deceleration parameter transitioning from positive to negative values. The anisotropy parameter initially approaches zero but increases with time for n > 0.5, indicating the evolution from isotropy to anisotropy. These findings provide insights into dark energy behavior within modified gravity frameworks and offer testable predictions for cosmological observations.
Downloads
References
S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley & Sons, 2013.
I. Domınguez, E.B. Guil, L. Piersanti, O. Straniero, and A. Tornambe, ”Supernovae and dark energy,” in: Cosmology Across Cultures, (Astronomical Society of the Pacific, 2008), pp. 42-46. https://hdl.handle.net/2117/22952
J.-M. Alimi, A. F¨uzfa, V. Boucher, Y. Rasera, J. Courtin, and P.-S.Corasaniti, ”Imprints of dark energy on cosmic structure formation–I. Realistic quintessence models and the non-linear matter power spectrum,” Monthly Notices of the Royal Astronomical Society, 401(2), 775-790 (2010). https://doi.org/10.1111/j.1365-2966.2009.15712.x
S. Perlmutter, M.S. Turner, and M. White, ”Constraining dark energy with type Ia supernovae and large-scale structure,” Physical Review Letters, 83(4), 670 (1999). https://doi.org/10.1103/PhysRevLett.83.670
S. Boughn, and R. Crittenden, ”A correlation between the cosmic microwave background and large-scale structure in the Universe,” Nature, 427(6969), 45-47 (2004). https://doi.org/10.1038/nature02139
Montesano, Francesco, ”The full shape of the large-scale galaxy power spectrum: modelling and cosmological implications,” D.Sc. Thesis, Ludwig–Maximilians–Universit, Munich, 2011. https://doi.org/10.5282/edoc.13663
J.-P. Dai, Y. Yang, and J.-Q. Xia, ”Reconstruction of the dark energy equation of state from the latest observations,” The Astrophysical Journal, 857(1), 9 (2018). https://doi.org/10.3847/1538-4357/aab49a
Tsujikawa, Shinji, ”Dark energy: Observational status and theoretical models,” in: Quantum Gravity and Quantum Cosmology, edited by G. Calcagni, L. Papantonopoulos, G. Siopsis, and N. Tsamispp, (Springer Berlin, Heidelberg, 2013), pp. 289-331. https://doi.org/10.1007/978-3-642-33036-0 11
J. Yoo, and Y. Watanabe, ”Theoretical models of dark energy,” International Journal of Modern Physics D, 21(12), 1230002 (2012). https://doi.org/10.1142/S0218271812300029
S. Tsujikawa, ”Dark energy: investigation and modeling,” in: Dark Matter and Dark Energy. Astrophysics and Space Science Library, vol. 370. edited by S. Matarrese, M. Colpi, V. Gorini, and U. Moschella, (Springer, Dordrecht, 2011), pp. 331-402. https://doi.org/10.1007/978-90-481-8685-3 8
T. Harko, and F.S.N. Lobo, “f(R,Lm) gravity,” The European Physical Journal C, vol. 70, pp. 373–379, 2010. https://doi.org/10.1140/epjc/s10052-010-1467-3
D.C. Maurya, ”Bianchi-I dark energy cosmological model in f(R,Lm)-gravity,” International Journal of Geometric Methods in Modern Physics, 21(04), 2450072 (2024). https://doi.org/10.1142/S0219887824500725
X. Liu, T. Harko, and S.D. Liang, ”Cosmological implications of modified gravity induced by quantum metric fluctuations,” The European Physical Journal C, 76(8), 420 (2016). https://doi.org/10.1140/epjc/s10052-016-4275-6
M.F. Shamir, ”Dynamics of anisotropic power-law f (R) cosmology,” Journal of Experimental and Theoretical Physics, 123(6), 979-984 (2016). https://doi.org/10.1134/S1063776116150152
M. Koussour, N. Myrzakulov, A.H.A. Alfedeel, and A. Abebe, ”Constraining the cosmological model of modified f(Q) gravity: Phantom dark energy and observational insights,” Progress of Theoretical and Experimental Physics, 2023(1), 113E01 (2023). https://doi.org/10.1093/ptep/ptad133
M. Zeyauddin, A. Dixit, and A. Pradhan, ”Anisotropic dark energy models in f(R,Lm)-gravity,” International Journal of Geometric Methods in Modern Physics, 21(02), 2450038 (2024). https://doi.org/10.1142/S0219887824500385
A. Pradhan, D.C. Maurya, Dinesh Chandra and G.K. Goswami, and A. Beesham, ”Modeling transit dark energy in f(R,Lm)-gravity,” International Journal of Geometric Methods in Modern Physics, 20(06), 2350105 (2023). https://doi.org/10.1142/S0219887823501050
D.C. Maurya, ”Constrained transit cosmological models in f(R,L{m},T)-gravity,” arXiv:2409.14024, https://doi.org/10.48550/arXiv.2409.14024; International Journal of Geometric Methods in Modern Physics, 22(07), 2550028 (2025). https://doi.org/10.1142/S0219887825500288
A. Dixit, A. Pradhan, M. Zeyauddin, and J. Singh, ”Dark energy nature of logarithmic f(R,Lm)-gravity models with observational constraints,” International Journal of Modern Physics A, 39(07n08), 2450043 (2024). https://doi.org/10.1142/S0217751X2450043X
R. Solanki, B. Patel, L.V. Jaybhaye, and P.K. Sahoo, ”Cosmic acceleration with bulk viscosity in an anisotropic f(R,Lm) background,” Communications in Theoretical Physics, 75(7), 075401 (2023). https://doi.org/10.1088/1572-9494/acd4aa
L.V. Jaybhaye, R. Solanki, S. Mandal, P.K. Sahoo, ”Constraining the Viscous Dark Energy Equation of State in f(R,Lm) Gravity, 9(4), 163 (2023). https://doi.org/10.3390/universe9040163
L.V. Jaybhaye, R. Solanki, and P.K. Sahoo, ”Bouncing cosmological models in f(R,Lm) gravity,” Physica Scripta, 99(6), 065031
(2024). https://doi.org/10.1088/1402-4896/ad4838
M.Koussour,N. Myrzakulov, J. Rayimbaev, A.H.A. Alfedeel, and H.M. Elkhair, ”Bouncing behavior in f(R,Lm) gravity: Phantom crossing and energy conditions,” arXiv preprint arXiv:2403.15772, (2024). https://doi.org/10.48550/arXiv.2403.15772; International Journal of Geometric Methods in Modern Physics, 21(11), 2450184 (2024). https://doi.org/10.1142/S0219887824501846
D.C. Maurya, ”Constraining on Dark Energy Models in Higher Derivative f(R,Lm)-Gravity Theory with Hubble Function,” http://dx.doi.org/10.2139/ssrn.4552229
S. Sahlua, A.H.A. Alfedeelb, and A. Abebe, ”The cosmology of f(R,Lm) gravity: constraining the background and perturbed dynamics,” arXiv:2406.08303, (2024). https://doi.org/10.48550/arXiv.2406.08303
R. Garg, G.P. Singh, A. Lalke, and S. Ray, ”Cosmological model with linear equation of state parameter in f(R,Lm) gravity,” Physics Letters A, 525, 129937 (2024). https://doi.org/10.1016/j.physleta.2024.129937
Y.K. Devi, S.A. Narawade, and B. Mishra, ”Constraining parameters for the accelerating universe in f(R,Lm) gravity,” hysics of the Dark Universe, 46, 101640 (2024). https://doi.org/10.1016/j.dark.2024.101640
V. Patil, J. Pawde, R. Mapari, S. Waghmare, ”FLRW Cosmology with Hybrid Scale Factor in f(R,Lm) Gravity,” East European Journal of Physics, (4), 8-17 (2023). https://doi.org/10.26565/2312-4334-2023-4-01
B.K. Shukla, R.K. Tiwari, and A. Beesham, ”FLRW universe in f(Q,T) gravity,” International Journal of Geometric Methods in Modern Physics, 20(14), 2350242 (2023). https://doi.org/10.1142/S0219887823502420
J.K. Singh, R. Myrzakulov, and H. Balhara, et al., ”A constrained cosmological model in f(R,Lm) gravity,” New Astronomy, 104, 102070 (2023). https://doi.org/10.1016/j.newast.2023.102070
K. Pawar, N.T. Katre, and A.K. Dabre, ”Accelerating Expansion of the Universe with Dark Matter and Holographic Dark Energy in f(T) Gravity,” Int. J. Sci. Res. in Physics and Applied Sciences, 11(2), 1-9 (2023). https://www.isroset.org/journal/IJSRPAS/full paper view.php?paper id=3094
Y.-J. Suh, K. De, and U.C. De, ”On Pseudo B-symmetric spacetimes and f(R) gravity,” Int. J. Geom. Meth. Mod. Phys. 22(02), 2450280 (2025). https://doi.org/10.1142/S0219887824502803
C.R. Mahanta, S. Deka, and K. Pathak, ”Anisotropic Cosmological Model in f (R, T) Theory of Gravity with a Quadratic Function of T,” East European Journal of Physics, (3), 43-52 (2023). https://doi.org/10.26565/2312-4334-2023-3-02
S. Kibaroglu, ”Anisotropic Born Infeld f(R) cosmologies,” Physics of the Dark Universe, 47, 101784 (2025). https://doi.org/10.1016/j.dark.2024.101784
R. Saleem, A. Ijaz, and S.Waheed, ”Anisotropic Cosmic Expansion Inspired by Some Novel Holographic Dark Energy Models in f(Q) Theory,” Fortschritte der Physik, 73(3), 2300276 (2025). https://doi.org/10.1002/prop.202300276
M.R. Ugale, and S.B. Deshmukh, ”Anisotropic Bianchi type VI0 cosmological models in a modified f(R,T) gravity,” Journal of Scientific Research, 16(1), 17-30 (2024). https://doi.org/10.3329/jsr.v16i1.62830
B. Mishra, F.MD. Esmeili, and S. Ray, ”Cosmological models with variable anisotropic parameter in f(R,T) gravity,” Indian Journal of Physics, 95(10), 2245-2254 (2021). https://doi.org/10.1007/s12648-020-01877-2
S. Chakraborty, ”Reconstruction method of f(R) gravity for isotropic and anisotropic spacetimes,” Physical Review D, 98(2), 024009 (2018). https://doi.org/10.1103/PhysRevD.98.024009
M.F. Shamir, and A. Komal, ”Energy bounds in f(R,G) gravity with anisotropic background,” International Journal of Geometric Methods in Modern Physics, 14(12), 1750169 (2017). https://doi.org/10.1142/S0219887817501699
P. Bolke, V. Patil, S.Waghmare, and N. Mahajan, ”Anisotropic Cosmological Model with SQM in f(R,Lm) Gravity,” East European Journal of Physics, (3), 45-55 (2024). https://doi.org/10.26565/2312-4334-2024-3-05
M.S. Berman, ”A special law of variation for Hubble’s parameter,” Nuovo Cimento B Serie, 74, 182-186 (1983). http://dx.doi.org/10.1007/BF02721676
M.S. Berman, and F. de Mello Gomide, ”Cosmological models with constant deceleration parameter,” General Relativity and Gravitation, 20, 191-198 (1988). https://doi.org/10.1007/BF00759327
Copyright (c) 2025 A.S. Khan, K.N. Pawar, I.I. Khan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



